mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
360 lines
17 KiB
Python
360 lines
17 KiB
Python
import collections
|
|
from enum import IntEnum
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
import imagelib
|
|
from facelib import FaceType, LandmarksProcessor
|
|
|
|
|
|
"""
|
|
output_sample_types = [
|
|
{} opts,
|
|
...
|
|
]
|
|
|
|
opts:
|
|
'types' : (S,S,...,S)
|
|
where S:
|
|
'IMG_SOURCE'
|
|
'IMG_WARPED'
|
|
'IMG_WARPED_TRANSFORMED''
|
|
'IMG_TRANSFORMED'
|
|
'IMG_LANDMARKS_ARRAY' #currently unused
|
|
'IMG_PITCH_YAW_ROLL'
|
|
|
|
'FACE_TYPE_HALF'
|
|
'FACE_TYPE_FULL'
|
|
'FACE_TYPE_HEAD' #currently unused
|
|
'FACE_TYPE_AVATAR' #currently unused
|
|
|
|
'MODE_BGR' #BGR
|
|
'MODE_G' #Grayscale
|
|
'MODE_GGG' #3xGrayscale
|
|
'MODE_M' #mask only
|
|
'MODE_BGR_SHUFFLE' #BGR shuffle
|
|
|
|
'resolution' : N
|
|
'motion_blur' : (chance_int, range) - chance 0..100 to apply to face (not mask), and max_size of motion blur
|
|
'ct_mode' :
|
|
'normalize_tanh' : bool
|
|
|
|
"""
|
|
|
|
class SampleProcessor(object):
|
|
class Types(IntEnum):
|
|
NONE = 0
|
|
|
|
IMG_TYPE_BEGIN = 1
|
|
IMG_SOURCE = 1
|
|
IMG_WARPED = 2
|
|
IMG_WARPED_TRANSFORMED = 3
|
|
IMG_TRANSFORMED = 4
|
|
IMG_LANDMARKS_ARRAY = 5 #currently unused
|
|
IMG_PITCH_YAW_ROLL = 6
|
|
IMG_PITCH_YAW_ROLL_SIGMOID = 7
|
|
IMG_TYPE_END = 10
|
|
|
|
FACE_TYPE_BEGIN = 10
|
|
FACE_TYPE_HALF = 10
|
|
FACE_TYPE_MID_FULL = 11
|
|
FACE_TYPE_FULL = 12
|
|
FACE_TYPE_HEAD = 13 #currently unused
|
|
FACE_TYPE_AVATAR = 14 #currently unused
|
|
FACE_TYPE_FULL_NO_ALIGN = 15
|
|
FACE_TYPE_HEAD_NO_ALIGN = 16
|
|
FACE_TYPE_END = 20
|
|
|
|
MODE_BEGIN = 40
|
|
MODE_BGR = 40 #BGR
|
|
MODE_G = 41 #Grayscale
|
|
MODE_GGG = 42 #3xGrayscale
|
|
MODE_M = 43 #mask only
|
|
MODE_BGR_SHUFFLE = 44 #BGR shuffle
|
|
MODE_BGR_RANDOM_HSV_SHIFT = 45
|
|
MODE_END = 50
|
|
|
|
class Options(object):
|
|
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
|
|
self.random_flip = random_flip
|
|
self.rotation_range = rotation_range
|
|
self.scale_range = scale_range
|
|
self.tx_range = tx_range
|
|
self.ty_range = ty_range
|
|
|
|
SPTF_FACETYPE_TO_FACETYPE = { Types.FACE_TYPE_HALF : FaceType.HALF,
|
|
Types.FACE_TYPE_MID_FULL : FaceType.MID_FULL,
|
|
Types.FACE_TYPE_FULL : FaceType.FULL,
|
|
Types.FACE_TYPE_HEAD : FaceType.HEAD,
|
|
Types.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN,
|
|
Types.FACE_TYPE_HEAD_NO_ALIGN : FaceType.HEAD_NO_ALIGN,
|
|
}
|
|
|
|
@staticmethod
|
|
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
|
|
SPTF = SampleProcessor.Types
|
|
|
|
sample_rnd_seed = np.random.randint(0x80000000)
|
|
|
|
outputs = []
|
|
for sample in samples:
|
|
sample_bgr = sample.load_bgr()
|
|
ct_sample_bgr = None
|
|
ct_sample_mask = None
|
|
h,w,c = sample_bgr.shape
|
|
|
|
is_face_sample = sample.landmarks is not None
|
|
|
|
if debug and is_face_sample:
|
|
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
|
|
|
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range, rnd_seed=sample_rnd_seed )
|
|
|
|
outputs_sample = []
|
|
for opts in output_sample_types:
|
|
|
|
resolution = opts.get('resolution', 0)
|
|
types = opts.get('types', [] )
|
|
|
|
border_replicate = opts.get('border_replicate', True)
|
|
random_sub_res = opts.get('random_sub_res', 0)
|
|
normalize_std_dev = opts.get('normalize_std_dev', False)
|
|
normalize_vgg = opts.get('normalize_vgg', False)
|
|
motion_blur = opts.get('motion_blur', None)
|
|
gaussian_blur = opts.get('gaussian_blur', None)
|
|
|
|
ct_mode = opts.get('ct_mode', 'None')
|
|
normalize_tanh = opts.get('normalize_tanh', False)
|
|
|
|
img_type = SPTF.NONE
|
|
target_face_type = SPTF.NONE
|
|
face_mask_type = SPTF.NONE
|
|
mode_type = SPTF.NONE
|
|
for t in types:
|
|
if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
|
|
img_type = t
|
|
elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
|
|
target_face_type = t
|
|
elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
|
|
mode_type = t
|
|
|
|
if img_type == SPTF.NONE:
|
|
raise ValueError ('expected IMG_ type')
|
|
|
|
if img_type == SPTF.IMG_LANDMARKS_ARRAY:
|
|
l = sample.landmarks
|
|
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
|
l = np.clip(l, 0.0, 1.0)
|
|
img = l
|
|
elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
|
pitch_yaw_roll = sample.get_pitch_yaw_roll()
|
|
|
|
if params['flip']:
|
|
yaw = -yaw
|
|
|
|
if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
|
pitch = (pitch+1.0) / 2.0
|
|
yaw = (yaw+1.0) / 2.0
|
|
roll = (roll+1.0) / 2.0
|
|
|
|
img = (pitch, yaw, roll)
|
|
else:
|
|
if mode_type == SPTF.NONE:
|
|
raise ValueError ('expected MODE_ type')
|
|
|
|
def do_transform(img, mask):
|
|
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
|
|
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
|
|
flip = img_type != SPTF.IMG_WARPED
|
|
|
|
img = imagelib.warp_by_params (params, img, warp, transform, flip, border_replicate)
|
|
if mask is not None:
|
|
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)
|
|
if len(mask.shape) == 2:
|
|
mask = mask[...,np.newaxis]
|
|
|
|
|
|
return img, mask
|
|
|
|
img = sample_bgr
|
|
|
|
### Prepare a mask
|
|
mask = None
|
|
if is_face_sample:
|
|
if sample.eyebrows_expand_mod is not None:
|
|
mask = LandmarksProcessor.get_image_hull_mask (img.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
|
|
else:
|
|
mask = LandmarksProcessor.get_image_hull_mask (img.shape, sample.landmarks)
|
|
|
|
if sample.ie_polys is not None:
|
|
sample.ie_polys.overlay_mask(mask)
|
|
##################
|
|
|
|
|
|
if motion_blur is not None:
|
|
chance, mb_max_size = motion_blur
|
|
chance = np.clip(chance, 0, 100)
|
|
|
|
if np.random.randint(100) < chance:
|
|
img = imagelib.LinearMotionBlur (img, np.random.randint( mb_max_size )+1, np.random.randint(360) )
|
|
|
|
if gaussian_blur is not None:
|
|
chance, kernel_max_size = gaussian_blur
|
|
chance = np.clip(chance, 0, 100)
|
|
|
|
if np.random.randint(100) < chance:
|
|
img = cv2.GaussianBlur(img, ( np.random.randint( kernel_max_size )*2+1 ,) *2 , 0)
|
|
|
|
if is_face_sample and target_face_type != SPTF.NONE:
|
|
target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[target_face_type]
|
|
if target_ft > sample.face_type:
|
|
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_ft) )
|
|
|
|
if sample.face_type == FaceType.MARK_ONLY:
|
|
#first warp to target facetype
|
|
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], target_ft), (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
|
|
mask = cv2.warpAffine( mask, LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], target_ft), (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
|
|
#then apply transforms
|
|
img, mask = do_transform (img, mask)
|
|
img = np.concatenate( (img, mask ), -1 )
|
|
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
|
else:
|
|
img, mask = do_transform (img, mask)
|
|
|
|
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, target_ft)
|
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2.INTER_CUBIC )
|
|
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_CUBIC )
|
|
img = np.concatenate( (img, mask[...,None] ), -1 )
|
|
|
|
else:
|
|
img, mask = do_transform (img, mask)
|
|
img = np.concatenate( (img, mask ), -1 )
|
|
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
|
|
|
if random_sub_res != 0:
|
|
sub_size = resolution - random_sub_res
|
|
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_res)
|
|
start_x = rnd_state.randint(sub_size+1)
|
|
start_y = rnd_state.randint(sub_size+1)
|
|
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
|
|
|
img = np.clip(img, 0, 1).astype(np.float32)
|
|
img_bgr = img[...,0:3]
|
|
img_mask = img[...,3:4]
|
|
|
|
if ct_mode is not None and ct_sample is not None:
|
|
if ct_sample_bgr is None:
|
|
ct_sample_bgr = ct_sample.load_bgr()
|
|
|
|
ct_sample_bgr_resized = cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR )
|
|
|
|
if ct_mode == 'lct':
|
|
img_bgr = imagelib.linear_color_transfer (img_bgr, ct_sample_bgr_resized)
|
|
img_bgr = np.clip( img_bgr, 0.0, 1.0)
|
|
elif ct_mode == 'rct':
|
|
img_bgr = imagelib.reinhard_color_transfer ( np.clip( (img_bgr*255).astype(np.uint8), 0, 255),
|
|
np.clip( (ct_sample_bgr_resized*255).astype(np.uint8), 0, 255) )
|
|
img_bgr = np.clip( img_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
elif ct_mode == 'mkl':
|
|
img_bgr = imagelib.color_transfer_mkl (img_bgr, ct_sample_bgr_resized)
|
|
elif ct_mode == 'idt':
|
|
img_bgr = imagelib.color_transfer_idt (img_bgr, ct_sample_bgr_resized)
|
|
elif ct_mode == 'sot':
|
|
img_bgr = imagelib.color_transfer_sot (img_bgr, ct_sample_bgr_resized)
|
|
img_bgr = np.clip( img_bgr, 0.0, 1.0)
|
|
|
|
if normalize_std_dev:
|
|
img_bgr = (img_bgr - img_bgr.mean( (0,1)) ) / img_bgr.std( (0,1) )
|
|
elif normalize_vgg:
|
|
img_bgr = np.clip(img_bgr*255, 0, 255)
|
|
img_bgr[:,:,0] -= 103.939
|
|
img_bgr[:,:,1] -= 116.779
|
|
img_bgr[:,:,2] -= 123.68
|
|
|
|
if mode_type == SPTF.MODE_BGR:
|
|
img = img_bgr
|
|
elif mode_type == SPTF.MODE_BGR_SHUFFLE:
|
|
rnd_state = np.random.RandomState (sample_rnd_seed)
|
|
img = np.take (img_bgr, rnd_state.permutation(img_bgr.shape[-1]), axis=-1)
|
|
|
|
elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
|
|
rnd_state = np.random.RandomState (sample_rnd_seed)
|
|
hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)
|
|
h, s, v = cv2.split(hsv)
|
|
h = (h + rnd_state.randint(360) ) % 360
|
|
s = np.clip ( s + rnd_state.random()-0.5, 0, 1 )
|
|
v = np.clip ( v + rnd_state.random()-0.5, 0, 1 )
|
|
hsv = cv2.merge([h, s, v])
|
|
img = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
|
|
elif mode_type == SPTF.MODE_G:
|
|
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)[...,None]
|
|
elif mode_type == SPTF.MODE_GGG:
|
|
img = np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
|
|
elif mode_type == SPTF.MODE_M and is_face_sample:
|
|
img = img_mask
|
|
|
|
if not debug:
|
|
if normalize_tanh:
|
|
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
|
|
else:
|
|
img = np.clip (img, 0.0, 1.0)
|
|
|
|
outputs_sample.append ( img )
|
|
outputs += [outputs_sample]
|
|
|
|
return outputs
|
|
|
|
"""
|
|
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
|
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
|
|
|
if debug and close_sample_bgr is not None:
|
|
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
|
|
RANDOM_CLOSE = 0x00000040, #currently unused
|
|
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
|
|
|
|
if f & SPTF.RANDOM_CLOSE != 0:
|
|
img_type += 10
|
|
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
|
|
img_type += 20
|
|
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
|
img_type -= 10
|
|
img = close_sample_bgr
|
|
cur_sample = close_sample
|
|
|
|
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
|
img_type -= 20
|
|
res = sample.shape[0]
|
|
|
|
s_landmarks = sample.landmarks.copy()
|
|
d_landmarks = close_sample.landmarks.copy()
|
|
idxs = list(range(len(s_landmarks)))
|
|
#remove landmarks near boundaries
|
|
for i in idxs[:]:
|
|
s_l = s_landmarks[i]
|
|
d_l = d_landmarks[i]
|
|
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
|
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
|
idxs.remove(i)
|
|
#remove landmarks that close to each other in 5 dist
|
|
for landmarks in [s_landmarks, d_landmarks]:
|
|
for i in idxs[:]:
|
|
s_l = landmarks[i]
|
|
for j in idxs[:]:
|
|
if i == j:
|
|
continue
|
|
s_l_2 = landmarks[j]
|
|
diff_l = np.abs(s_l - s_l_2)
|
|
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
|
idxs.remove(i)
|
|
break
|
|
s_landmarks = s_landmarks[idxs]
|
|
d_landmarks = d_landmarks[idxs]
|
|
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
|
cur_sample = close_sample
|
|
else:
|
|
"""
|