DeepFaceLab/samplelib/SampleGeneratorImageTemporal.py
Colombo 50f892d57d all models: removed options 'src_scale_mod', and 'sort samples by yaw as target'
If you want, you can manually remove unnecessary angles from src faceset after sort by yaw.

Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster.

added
4.2.other) data_src/dst util faceset pack.bat
	Packs /aligned/ samples into one /aligned/samples.pak file.
	After that, all faces will be deleted.

4.2.other) data_src/dst util faceset unpack.bat
	unpacks faces from /aligned/samples.pak to /aligned/ dir.
	After that, samples.pak will be deleted.

Packed faceset load and work faster.
2019-12-21 23:16:55 +04:00

80 lines
2.9 KiB
Python

import traceback
import numpy as np
import cv2
from utils import iter_utils
from samplelib import SampleType, SampleProcessor, SampleHost, SampleGeneratorBase
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
...
]
'''
class SampleGeneratorImageTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, temporal_image_count, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
super().__init__(samples_path, debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.samples = SampleHost.load (SampleType.IMAGE, self.samples_path)
self.generator_samples = [ self.samples ]
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] if self.debug else \
[iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, generator_id):
samples = self.generator_samples[generator_id]
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
mult_max = 4
samples_sub_len = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
if samples_sub_len <= 0:
raise ValueError('Not enough samples to fit temporal line.')
shuffle_idxs = []
while True:
batches = None
for n_batch in range(self.batch_size):
if len(shuffle_idxs) == 0:
shuffle_idxs = [ *range(samples_sub_len) ]
np.random.shuffle (shuffle_idxs)
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0]
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]