DeepFaceLab/samplelib/SampleGeneratorFaceTemporal.py
2020-01-07 13:45:54 +04:00

92 lines
3.3 KiB
Python

import pickle
import traceback
import cv2
import numpy as np
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
SampleType)
from utils import iter_utils
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
class SampleGeneratorFaceTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, temporal_image_count, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
super().__init__(samples_path, debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
if self.debug:
self.generators_count = 1
else:
self.generators_count = generators_count
samples = SampleHost.load (SampleType.FACE_TEMPORAL_SORTED, self.samples_path)
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
pickled_samples = pickle.dumps(samples, 4)
if self.debug:
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, pickled_samples) )]
else:
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, pickled_samples) ) for i in range(self.generators_count) ]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param):
generator_id, pickled_samples = param
samples = pickle.loads(pickled_samples)
samples_len = len(samples)
mult_max = 1
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
samples_idxs = [ *range(l+1) ]
if len(samples_idxs) - self.temporal_image_count < 0:
raise ValueError('Not enough samples to fit temporal line.')
shuffle_idxs = []
while True:
batches = None
for n_batch in range(self.batch_size):
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle (shuffle_idxs)
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0]
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]