mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
If you want, you can manually remove unnecessary angles from src faceset after sort by yaw. Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster. added 4.2.other) data_src/dst util faceset pack.bat Packs /aligned/ samples into one /aligned/samples.pak file. After that, all faces will be deleted. 4.2.other) data_src/dst util faceset unpack.bat unpacks faces from /aligned/samples.pak to /aligned/ dir. After that, samples.pak will be deleted. Packed faceset load and work faster.
179 lines
7.1 KiB
Python
179 lines
7.1 KiB
Python
import numpy as np
|
|
|
|
from nnlib import nnlib
|
|
from models import ModelBase
|
|
from facelib import FaceType
|
|
from samplelib import *
|
|
from interact import interact as io
|
|
|
|
class Model(ModelBase):
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
if is_first_run or ask_override:
|
|
def_pixel_loss = self.options.get('pixel_loss', False)
|
|
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
|
|
else:
|
|
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
|
|
|
|
#override
|
|
def onInitialize(self):
|
|
exec(nnlib.import_all(), locals(), globals())
|
|
self.set_vram_batch_requirements( {4.5:4} )
|
|
|
|
ae_input_layer = Input(shape=(128, 128, 3))
|
|
mask_layer = Input(shape=(128, 128, 1)) #same as output
|
|
|
|
self.encoder, self.decoder, self.inter_B, self.inter_AB = self.Build(ae_input_layer)
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load = [ [self.encoder, 'encoder.h5'],
|
|
[self.decoder, 'decoder.h5'],
|
|
[self.inter_B, 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5']
|
|
]
|
|
self.load_weights_safe(weights_to_load)
|
|
|
|
code = self.encoder(ae_input_layer)
|
|
AB = self.inter_AB(code)
|
|
B = self.inter_B(code)
|
|
rec_src = self.decoder(Concatenate()([AB, AB]))
|
|
rec_dst = self.decoder(Concatenate()([B, AB]))
|
|
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src )
|
|
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst )
|
|
|
|
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
|
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
|
|
|
self.convert = K.function([ae_input_layer],rec_src)
|
|
|
|
|
|
if self.is_training_mode:
|
|
t = SampleProcessor.Types
|
|
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
|
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
|
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
|
|
output_sample_types=output_sample_types),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
|
output_sample_types=output_sample_types)
|
|
])
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return [[self.encoder, 'encoder.h5'],
|
|
[self.decoder, 'decoder.h5'],
|
|
[self.inter_B, 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5']]
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( self.get_model_filename_list() )
|
|
|
|
#override
|
|
def onTrainOneIter(self, sample, generators_list):
|
|
warped_src, target_src, target_src_mask = sample[0]
|
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
|
|
|
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
|
|
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
|
|
|
|
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
|
|
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][1][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
|
|
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
|
|
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
|
|
|
|
mAA = np.repeat ( mAA, (3,), -1)
|
|
mAB = np.repeat ( mAB, (3,), -1)
|
|
mBB = np.repeat ( mBB, (3,), -1)
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
test_A[i,:,:,0:3],
|
|
AA[i],
|
|
#mAA[i],
|
|
test_B[i,:,:,0:3],
|
|
BB[i],
|
|
#mBB[i],
|
|
AB[i],
|
|
#mAB[i]
|
|
), axis=1) )
|
|
|
|
return [ ('LIAEF128', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, face=None, dummy_predict=False):
|
|
if dummy_predict:
|
|
self.convert ([ np.zeros ( (1, 128, 128, 3), dtype=np.float32 ) ])
|
|
else:
|
|
x, mx = self.convert ( [ face[np.newaxis,...] ] )
|
|
return x[0], mx[0][...,0]
|
|
|
|
#override
|
|
def get_ConverterConfig(self):
|
|
import converters
|
|
return self.predictor_func, (128,128,3), converters.ConverterConfigMasked(face_type=FaceType.FULL, default_mode='seamless')
|
|
|
|
def Build(self, input_layer):
|
|
exec(nnlib.code_import_all, locals(), globals())
|
|
|
|
def downscale (dim):
|
|
def func(x):
|
|
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
|
|
return func
|
|
|
|
def upscale (dim):
|
|
def func(x):
|
|
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
|
|
return func
|
|
|
|
def Encoder():
|
|
x = input_layer
|
|
x = downscale(128)(x)
|
|
x = downscale(256)(x)
|
|
x = downscale(512)(x)
|
|
x = downscale(1024)(x)
|
|
x = Flatten()(x)
|
|
return Model(input_layer, x)
|
|
|
|
def Intermediate():
|
|
input_layer = Input(shape=(None, 8 * 8 * 1024))
|
|
x = input_layer
|
|
x = Dense(256)(x)
|
|
x = Dense(8 * 8 * 512)(x)
|
|
x = Reshape((8, 8, 512))(x)
|
|
x = upscale(512)(x)
|
|
return Model(input_layer, x)
|
|
|
|
def Decoder():
|
|
input_ = Input(shape=(16, 16, 1024))
|
|
x = input_
|
|
x = upscale(512)(x)
|
|
x = upscale(256)(x)
|
|
x = upscale(128)(x)
|
|
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
|
|
y = input_ #mask decoder
|
|
y = upscale(512)(y)
|
|
y = upscale(256)(y)
|
|
y = upscale(128)(y)
|
|
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid' )(y)
|
|
|
|
return Model(input_, [x,y])
|
|
|
|
return Encoder(), Decoder(), Intermediate(), Intermediate()
|