Colombo 50f892d57d all models: removed options 'src_scale_mod', and 'sort samples by yaw as target'
If you want, you can manually remove unnecessary angles from src faceset after sort by yaw.

Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster.

added
4.2.other) data_src/dst util faceset pack.bat
	Packs /aligned/ samples into one /aligned/samples.pak file.
	After that, all faces will be deleted.

4.2.other) data_src/dst util faceset unpack.bat
	unpacks faces from /aligned/samples.pak to /aligned/ dir.
	After that, samples.pak will be deleted.

Packed faceset load and work faster.
2019-12-21 23:16:55 +04:00

204 lines
8.4 KiB
Python

import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
self.options['lighter_ae'] = io.input_bool ("Use lightweight autoencoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight autoencoder is faster, requires less VRAM, sacrificing overall quality. If your GPU VRAM <= 4, you should to choose this option.")
else:
default_lighter_ae = self.options.get('created_vram_gb', 99) <= 4 #temporally support old models, deprecate in future
if 'created_vram_gb' in self.options.keys():
self.options.pop ('created_vram_gb')
self.options['lighter_ae'] = self.options.get('lighter_ae', default_lighter_ae)
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {2.5:4} )
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build( self.options['lighter_ae'] )
if not self.is_first_run():
weights_to_load = [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
self.load_weights_safe(weights_to_load)
input_src_bgr = Input(bgr_shape)
input_src_mask = Input(mask_shape)
input_dst_bgr = Input(bgr_shape)
input_dst_mask = Input(mask_shape)
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
self.ae = Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
self.ae.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[ DSSIMMSEMaskLoss(input_src_mask, is_mse=self.options['pixel_loss']), 'mae', DSSIMMSEMaskLoss(input_dst_mask, is_mse=self.options['pixel_loss']), 'mae' ] )
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M), 'resolution':128} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types=output_sample_types ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=output_sample_types )
])
#override
def get_model_filename_list(self):
return [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_mask, warped_dst, target_dst_mask], [target_src, target_src_mask, target_dst, target_dst_mask] )
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.src_view([test_A])
AB, mAB = self.src_view([test_B])
BB, mBB = self.dst_view([test_B])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('H128', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.src_view ([ np.zeros ( (1, 128, 128, 3), dtype=np.float32 ) ])
else:
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (128,128,3), converters.ConverterConfigMasked(face_type=FaceType.HALF, default_mode='seamless')
def Build(self, lighter_ae):
exec(nnlib.code_import_all, locals(), globals())
bgr_shape = (128, 128, 3)
mask_shape = (128, 128, 1)
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(input_shape):
input_layer = Input(input_shape)
x = input_layer
if not lighter_ae:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(512)(Flatten()(x))
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
else:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(256)(Flatten()(x))
x = Dense(8 * 8 * 256)(x)
x = Reshape((8, 8, 256))(x)
x = upscale(256)(x)
return Model(input_layer, x)
def Decoder():
if not lighter_ae:
input_ = Input(shape=(16, 16, 512))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
y = input_ #mask decoder
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
else:
input_ = Input(shape=(16, 16, 256))
x = input_
x = upscale(256)(x)
x = upscale(128)(x)
x = upscale(64)(x)
y = input_ #mask decoder
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [x,y])
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()