Colombo 50f892d57d all models: removed options 'src_scale_mod', and 'sort samples by yaw as target'
If you want, you can manually remove unnecessary angles from src faceset after sort by yaw.

Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster.

added
4.2.other) data_src/dst util faceset pack.bat
	Packs /aligned/ samples into one /aligned/samples.pak file.
	After that, all faces will be deleted.

4.2.other) data_src/dst util faceset unpack.bat
	unpacks faces from /aligned/samples.pak to /aligned/ dir.
	After that, samples.pak will be deleted.

Packed faceset load and work faster.
2019-12-21 23:16:55 +04:00

104 lines
4.4 KiB
Python

import numpy as np
from nnlib import nnlib, TernausNet
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_enable_autobackup=False,
ask_write_preview_history=False,
ask_target_iter=False,
ask_random_flip=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_face_type = 'f'
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {1.5:4, 11:48} )
self.resolution = 256
self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
model_name = 'FANSeg'
self.fan_seg = TernausNet(model_name, self.resolution,
FaceType.toString(self.face_type),
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True)
if self.is_training_mode:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR_RANDOM_HSV_SHIFT), 'resolution' : self.resolution, 'motion_blur':(25, 5), 'gaussian_blur':(25,5), 'border_replicate':False},
{ 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_M), 'resolution': self.resolution },
]),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True ),
output_sample_types=[ { 'types': (t.IMG_TRANSFORMED , face_type, t.MODE_BGR_RANDOM_HSV_SHIFT), 'resolution' : self.resolution},
])
])
#override
def onSave(self):
self.fan_seg.save_weights()
#override
def onTrainOneIter(self, generators_samples, generators_list):
target_src, target_src_mask = generators_samples[0]
loss = self.fan_seg.train( target_src, target_src_mask )
return ( ('loss', loss), )
#override
def onGetPreview(self, sample):
test_A = sample[0][0][0:4] #first 4 samples
test_Am = sample[0][1][0:4] #first 4 samples
test_B = sample[1][0][0:4] #first 4 samples
mAA = self.fan_seg.extract(test_A)
mBB = self.fan_seg.extract(test_B)
test_Am = np.repeat ( test_Am, (3,), -1)
mAA = np.repeat ( mAA, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
test_Am[i],
mAA[i],
test_A[i,:,:,0:3]*mAA[i],
), axis=1) )
st2 = []
for i in range(0, len(test_B)):
st2.append ( np.concatenate ( (
test_B[i,:,:,0:3],
mBB[i],
test_B[i,:,:,0:3]*mBB[i],
), axis=1) )
return [ ('training data', np.concatenate ( st, axis=0 ) ),
('evaluating data', np.concatenate ( st2, axis=0 ) ),
]