mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
652 lines
28 KiB
Python
652 lines
28 KiB
Python
import colorsys
|
|
import inspect
|
|
import json
|
|
import os
|
|
import pickle
|
|
import shutil
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
import imagelib
|
|
from interact import interact as io
|
|
from nnlib import nnlib
|
|
from samplelib import SampleGeneratorBase
|
|
from utils import Path_utils, std_utils
|
|
from utils.cv2_utils import *
|
|
|
|
'''
|
|
You can implement your own model. Check examples.
|
|
'''
|
|
class ModelBase(object):
|
|
|
|
|
|
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, is_training=False, debug = False, no_preview=False, device_args = None,
|
|
ask_enable_autobackup=True,
|
|
ask_write_preview_history=True,
|
|
ask_target_iter=True,
|
|
ask_batch_size=True,
|
|
ask_random_flip=True, **kwargs):
|
|
|
|
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
|
|
device_args['cpu_only'] = True if debug else device_args.get('cpu_only',False)
|
|
|
|
if device_args['force_gpu_idx'] == -1 and not device_args['cpu_only']:
|
|
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
|
|
if len(idxs_names_list) > 1:
|
|
io.log_info ("You have multi GPUs in a system: ")
|
|
for idx, name in idxs_names_list:
|
|
io.log_info ("[%d] : %s" % (idx, name) )
|
|
|
|
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
|
|
self.device_args = device_args
|
|
|
|
self.device_config = nnlib.DeviceConfig(allow_growth=True, **self.device_args)
|
|
|
|
io.log_info ("Loading model...")
|
|
|
|
self.model_path = model_path
|
|
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
|
|
|
|
self.training_data_src_path = training_data_src_path
|
|
self.training_data_dst_path = training_data_dst_path
|
|
self.pretraining_data_path = pretraining_data_path
|
|
|
|
self.debug = debug
|
|
self.no_preview = no_preview
|
|
self.is_training_mode = is_training
|
|
|
|
self.iter = 0
|
|
self.options = {}
|
|
self.loss_history = []
|
|
self.sample_for_preview = None
|
|
|
|
model_data = {}
|
|
if self.model_data_path.exists():
|
|
model_data = pickle.loads ( self.model_data_path.read_bytes() )
|
|
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
|
|
if 'epoch' in self.options:
|
|
self.options.pop('epoch')
|
|
if self.iter != 0:
|
|
self.options = model_data['options']
|
|
self.loss_history = model_data.get('loss_history', [])
|
|
self.sample_for_preview = model_data.get('sample_for_preview', None)
|
|
|
|
ask_override = self.is_training_mode and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
|
|
|
|
yn_str = {True:'y',False:'n'}
|
|
|
|
if self.iter == 0:
|
|
io.log_info ("\nModel first run.")
|
|
|
|
if ask_enable_autobackup and (self.iter == 0 or ask_override):
|
|
default_autobackup = False if self.iter == 0 else self.options.get('autobackup',False)
|
|
self.options['autobackup'] = io.input_bool("Enable autobackup? (y/n ?:help skip:%s) : " % (yn_str[default_autobackup]) , default_autobackup, help_message="Autobackup model files with preview every hour for last 15 hours. Latest backup located in model/<>_autobackups/01")
|
|
else:
|
|
self.options['autobackup'] = self.options.get('autobackup', False)
|
|
|
|
if ask_write_preview_history and (self.iter == 0 or ask_override):
|
|
default_write_preview_history = False if self.iter == 0 else self.options.get('write_preview_history',False)
|
|
self.options['write_preview_history'] = io.input_bool("Write preview history? (y/n ?:help skip:%s) : " % (yn_str[default_write_preview_history]) , default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
|
|
else:
|
|
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
|
|
|
|
if (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_support_windows():
|
|
choose_preview_history = io.input_bool("Choose image for the preview history? (y/n skip:%s) : " % (yn_str[False]) , False)
|
|
elif (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_colab():
|
|
choose_preview_history = io.input_bool("Randomly choose new image for preview history? (y/n ?:help skip:%s) : " % (yn_str[False]), False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
|
|
else:
|
|
choose_preview_history = False
|
|
|
|
if ask_target_iter:
|
|
if (self.iter == 0 or ask_override):
|
|
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
|
|
else:
|
|
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
|
|
if 'target_epoch' in self.options:
|
|
self.options.pop('target_epoch')
|
|
|
|
if ask_batch_size and (self.iter == 0 or ask_override):
|
|
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
|
|
self.batch_size = max(0, io.input_int("Batch_size (?:help skip:%d) : " % (default_batch_size), default_batch_size, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
|
|
else:
|
|
self.batch_size = self.options.get('batch_size', 0)
|
|
|
|
if ask_random_flip:
|
|
default_random_flip = self.options.get('random_flip', True)
|
|
if (self.iter == 0 or ask_override):
|
|
self.options['random_flip'] = io.input_bool(f"Flip faces randomly? (y/n ?:help skip:{yn_str[default_random_flip]}) : ", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
|
|
else:
|
|
self.options['random_flip'] = self.options.get('random_flip', default_random_flip)
|
|
|
|
self.autobackup = self.options.get('autobackup', False)
|
|
if not self.autobackup and 'autobackup' in self.options:
|
|
self.options.pop('autobackup')
|
|
|
|
self.write_preview_history = self.options.get('write_preview_history', False)
|
|
if not self.write_preview_history and 'write_preview_history' in self.options:
|
|
self.options.pop('write_preview_history')
|
|
|
|
self.target_iter = self.options.get('target_iter',0)
|
|
if self.target_iter == 0 and 'target_iter' in self.options:
|
|
self.options.pop('target_iter')
|
|
|
|
#self.batch_size = self.options.get('batch_size',0)
|
|
self.sort_by_yaw = self.options.get('sort_by_yaw',False)
|
|
self.random_flip = self.options.get('random_flip',True)
|
|
|
|
self.onInitializeOptions(self.iter == 0, ask_override)
|
|
|
|
nnlib.import_all(self.device_config)
|
|
self.keras = nnlib.keras
|
|
self.K = nnlib.keras.backend
|
|
|
|
self.onInitialize()
|
|
|
|
self.options['batch_size'] = self.batch_size
|
|
|
|
if self.debug or self.batch_size == 0:
|
|
self.batch_size = 1
|
|
|
|
if self.is_training_mode:
|
|
if self.device_args['force_gpu_idx'] == -1:
|
|
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
|
|
self.autobackups_path = self.model_path / ( '%s_autobackups' % (self.get_model_name()) )
|
|
else:
|
|
self.preview_history_path = self.model_path / ( '%d_%s_history' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
|
|
self.autobackups_path = self.model_path / ( '%d_%s_autobackups' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
|
|
|
|
if self.autobackup:
|
|
self.autobackup_current_hour = time.localtime().tm_hour
|
|
|
|
if not self.autobackups_path.exists():
|
|
self.autobackups_path.mkdir(exist_ok=True)
|
|
|
|
if self.write_preview_history or io.is_colab():
|
|
if not self.preview_history_path.exists():
|
|
self.preview_history_path.mkdir(exist_ok=True)
|
|
else:
|
|
if self.iter == 0:
|
|
for filename in Path_utils.get_image_paths(self.preview_history_path):
|
|
Path(filename).unlink()
|
|
|
|
if self.generator_list is None:
|
|
raise ValueError( 'You didnt set_training_data_generators()')
|
|
else:
|
|
for i, generator in enumerate(self.generator_list):
|
|
if not isinstance(generator, SampleGeneratorBase):
|
|
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
|
|
|
|
if self.sample_for_preview is None or choose_preview_history:
|
|
if choose_preview_history and io.is_support_windows():
|
|
io.log_info ("Choose image for the preview history. [p] - next. [enter] - confirm.")
|
|
wnd_name = "[p] - next. [enter] - confirm."
|
|
io.named_window(wnd_name)
|
|
io.capture_keys(wnd_name)
|
|
choosed = False
|
|
while not choosed:
|
|
self.sample_for_preview = self.generate_next_sample()
|
|
preview = self.get_static_preview()
|
|
io.show_image( wnd_name, (preview*255).astype(np.uint8) )
|
|
|
|
while True:
|
|
key_events = io.get_key_events(wnd_name)
|
|
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
|
|
if key == ord('\n') or key == ord('\r'):
|
|
choosed = True
|
|
break
|
|
elif key == ord('p'):
|
|
break
|
|
|
|
try:
|
|
io.process_messages(0.1)
|
|
except KeyboardInterrupt:
|
|
choosed = True
|
|
|
|
io.destroy_window(wnd_name)
|
|
else:
|
|
self.sample_for_preview = self.generate_next_sample()
|
|
|
|
try:
|
|
self.get_static_preview()
|
|
except:
|
|
self.sample_for_preview = self.generate_next_sample()
|
|
|
|
self.last_sample = self.sample_for_preview
|
|
|
|
###Generate text summary of model hyperparameters
|
|
#Find the longest key name and value string. Used as column widths.
|
|
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
|
|
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.iter)), len(self.get_model_name())]) + 1 # Single space buffer to right edge
|
|
if not self.device_config.cpu_only: #Check length of GPU names
|
|
width_value = max([len(nnlib.device.getDeviceName(idx))+1 for idx in self.device_config.gpu_idxs] + [width_value])
|
|
width_total = width_name + width_value + 2 #Plus 2 for ": "
|
|
|
|
model_summary_text = []
|
|
model_summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
model_summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
model_summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.iter): <{width_value}}=='] # Iter
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
|
|
model_summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
for key in self.options.keys():
|
|
model_summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
|
|
model_summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
if self.device_config.multi_gpu:
|
|
model_summary_text += [f'=={"Using multi_gpu": >{width_name}}: {"True": <{width_value}}=='] # multi_gpu
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
if self.device_config.cpu_only:
|
|
model_summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
|
|
else:
|
|
for idx in self.device_config.gpu_idxs:
|
|
model_summary_text += [f'=={"Device index": >{width_name}}: {idx: <{width_value}}=='] # GPU hardware device index
|
|
model_summary_text += [f'=={"Name": >{width_name}}: {nnlib.device.getDeviceName(idx): <{width_value}}=='] # GPU name
|
|
vram_str = f'{nnlib.device.getDeviceVRAMTotalGb(idx):.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
|
|
model_summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
|
|
model_summary_text += [f'=={" "*width_total}==']
|
|
model_summary_text += [f'=={"="*width_total}==']
|
|
|
|
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] <= 2: # Low VRAM warning
|
|
model_summary_text += ["/!\\"]
|
|
model_summary_text += ["/!\\ WARNING:"]
|
|
model_summary_text += ["/!\\ You are using a GPU with 2GB or less VRAM. This may significantly reduce the quality of your result!"]
|
|
model_summary_text += ["/!\\ If training does not start, close all programs and try again."]
|
|
model_summary_text += ["/!\\ Also you can disable Windows Aero Desktop to increase available VRAM."]
|
|
model_summary_text += ["/!\\"]
|
|
|
|
model_summary_text = "\n".join (model_summary_text)
|
|
self.model_summary_text = model_summary_text
|
|
io.log_info(model_summary_text)
|
|
|
|
#overridable
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
pass
|
|
|
|
#overridable
|
|
def onInitialize(self):
|
|
'''
|
|
initialize your keras models
|
|
|
|
store and retrieve your model options in self.options['']
|
|
|
|
check example
|
|
'''
|
|
pass
|
|
|
|
#overridable
|
|
def onSave(self):
|
|
#save your keras models here
|
|
pass
|
|
|
|
#overridable
|
|
def onTrainOneIter(self, sample, generator_list):
|
|
#train your keras models here
|
|
|
|
#return array of losses
|
|
return ( ('loss_src', 0), ('loss_dst', 0) )
|
|
|
|
#overridable
|
|
def onGetPreview(self, sample):
|
|
#you can return multiple previews
|
|
#return [ ('preview_name',preview_rgb), ... ]
|
|
return []
|
|
|
|
#overridable if you want model name differs from folder name
|
|
def get_model_name(self):
|
|
return Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
|
|
|
|
#overridable , return [ [model, filename],... ] list
|
|
def get_model_filename_list(self):
|
|
return []
|
|
|
|
#overridable
|
|
def get_ConverterConfig(self):
|
|
#return predictor_func, predictor_input_shape, ConverterConfig() for the model
|
|
raise NotImplementedError
|
|
|
|
def get_target_iter(self):
|
|
return self.target_iter
|
|
|
|
def is_reached_iter_goal(self):
|
|
return self.target_iter != 0 and self.iter >= self.target_iter
|
|
|
|
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
|
|
#def to_multi_gpu_model_if_possible (self, models_list):
|
|
# if len(self.device_config.gpu_idxs) > 1:
|
|
# #make batch_size to divide on GPU count without remainder
|
|
# self.batch_size = int( self.batch_size / len(self.device_config.gpu_idxs) )
|
|
# if self.batch_size == 0:
|
|
# self.batch_size = 1
|
|
# self.batch_size *= len(self.device_config.gpu_idxs)
|
|
#
|
|
# result = []
|
|
# for model in models_list:
|
|
# for i in range( len(model.output_names) ):
|
|
# model.output_names = 'output_%d' % (i)
|
|
# result += [ nnlib.keras.utils.multi_gpu_model( model, self.device_config.gpu_idxs ) ]
|
|
#
|
|
# return result
|
|
# else:
|
|
# return models_list
|
|
|
|
def get_previews(self):
|
|
return self.onGetPreview ( self.last_sample )
|
|
|
|
def get_static_preview(self):
|
|
return self.onGetPreview (self.sample_for_preview)[0][1] #first preview, and bgr
|
|
|
|
def save(self):
|
|
summary_path = self.get_strpath_storage_for_file('summary.txt')
|
|
Path( summary_path ).write_text(self.model_summary_text)
|
|
self.onSave()
|
|
|
|
model_data = {
|
|
'iter': self.iter,
|
|
'options': self.options,
|
|
'loss_history': self.loss_history,
|
|
'sample_for_preview' : self.sample_for_preview
|
|
}
|
|
self.model_data_path.write_bytes( pickle.dumps(model_data) )
|
|
|
|
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
|
|
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
|
|
|
|
if self.autobackup:
|
|
current_hour = time.localtime().tm_hour
|
|
if self.autobackup_current_hour != current_hour:
|
|
self.autobackup_current_hour = current_hour
|
|
|
|
for i in range(15,0,-1):
|
|
idx_str = '%.2d' % i
|
|
next_idx_str = '%.2d' % (i+1)
|
|
|
|
idx_backup_path = self.autobackups_path / idx_str
|
|
next_idx_packup_path = self.autobackups_path / next_idx_str
|
|
|
|
if idx_backup_path.exists():
|
|
if i == 15:
|
|
Path_utils.delete_all_files(idx_backup_path)
|
|
else:
|
|
next_idx_packup_path.mkdir(exist_ok=True)
|
|
Path_utils.move_all_files (idx_backup_path, next_idx_packup_path)
|
|
|
|
if i == 1:
|
|
idx_backup_path.mkdir(exist_ok=True)
|
|
for filename in bckp_filename_list:
|
|
shutil.copy ( str(filename), str(idx_backup_path / Path(filename).name) )
|
|
|
|
previews = self.get_previews()
|
|
plist = []
|
|
for i in range(len(previews)):
|
|
name, bgr = previews[i]
|
|
plist += [ (bgr, idx_backup_path / ( ('preview_%s.jpg') % (name)) ) ]
|
|
|
|
for preview, filepath in plist:
|
|
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter, preview.shape[1], preview.shape[2])
|
|
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
|
|
cv2_imwrite (filepath, img )
|
|
|
|
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
|
|
exec(nnlib.code_import_all, locals(), globals())
|
|
|
|
loaded = []
|
|
not_loaded = []
|
|
for mf in model_filename_list:
|
|
model, filename = mf
|
|
filename = self.get_strpath_storage_for_file(filename)
|
|
|
|
if Path(filename).exists():
|
|
loaded += [ mf ]
|
|
|
|
if issubclass(model.__class__, keras.optimizers.Optimizer):
|
|
opt = model
|
|
|
|
try:
|
|
with open(filename, "rb") as f:
|
|
fd = pickle.loads(f.read())
|
|
|
|
weights = fd.get('weights', None)
|
|
if weights is not None:
|
|
opt.set_weights(weights)
|
|
|
|
except Exception as e:
|
|
print ("Unable to load ", filename)
|
|
|
|
else:
|
|
model.load_weights(filename)
|
|
else:
|
|
not_loaded += [ mf ]
|
|
|
|
|
|
return loaded, not_loaded
|
|
|
|
def save_weights_safe(self, model_filename_list):
|
|
exec(nnlib.code_import_all, locals(), globals())
|
|
|
|
for model, filename in model_filename_list:
|
|
filename = self.get_strpath_storage_for_file(filename) + '.tmp'
|
|
|
|
if issubclass(model.__class__, keras.optimizers.Optimizer):
|
|
opt = model
|
|
|
|
try:
|
|
fd = {}
|
|
symbolic_weights = getattr(opt, 'weights')
|
|
if symbolic_weights:
|
|
fd['weights'] = self.K.batch_get_value(symbolic_weights)
|
|
|
|
with open(filename, 'wb') as f:
|
|
f.write( pickle.dumps(fd) )
|
|
except Exception as e:
|
|
print ("Unable to save ", filename)
|
|
else:
|
|
model.save_weights( filename)
|
|
|
|
rename_list = model_filename_list
|
|
|
|
"""
|
|
#unused
|
|
, optimizer_filename_list=[]
|
|
if len(optimizer_filename_list) != 0:
|
|
opt_filename = self.get_strpath_storage_for_file('opt.h5')
|
|
|
|
try:
|
|
d = {}
|
|
for opt, filename in optimizer_filename_list:
|
|
fd = {}
|
|
symbolic_weights = getattr(opt, 'weights')
|
|
if symbolic_weights:
|
|
fd['weights'] = self.K.batch_get_value(symbolic_weights)
|
|
|
|
d[filename] = fd
|
|
|
|
with open(opt_filename+'.tmp', 'wb') as f:
|
|
f.write( pickle.dumps(d) )
|
|
|
|
rename_list += [('', 'opt.h5')]
|
|
except Exception as e:
|
|
print ("Unable to save ", opt_filename)
|
|
"""
|
|
|
|
for _, filename in rename_list:
|
|
filename = self.get_strpath_storage_for_file(filename)
|
|
source_filename = Path(filename+'.tmp')
|
|
if source_filename.exists():
|
|
target_filename = Path(filename)
|
|
if target_filename.exists():
|
|
target_filename.unlink()
|
|
source_filename.rename ( str(target_filename) )
|
|
|
|
def debug_one_iter(self):
|
|
images = []
|
|
for generator in self.generator_list:
|
|
for i,batch in enumerate(next(generator)):
|
|
if len(batch.shape) == 4:
|
|
images.append( batch[0] )
|
|
|
|
return imagelib.equalize_and_stack_square (images)
|
|
|
|
def generate_next_sample(self):
|
|
return [ generator.generate_next() for generator in self.generator_list]
|
|
|
|
#overridable
|
|
def on_success_train_one_iter(self):
|
|
pass
|
|
|
|
def train_one_iter(self):
|
|
sample = self.generate_next_sample()
|
|
iter_time = time.time()
|
|
losses = self.onTrainOneIter(sample, self.generator_list)
|
|
iter_time = time.time() - iter_time
|
|
self.last_sample = sample
|
|
|
|
self.loss_history.append ( [float(loss[1]) for loss in losses] )
|
|
|
|
if self.iter % 10 == 0:
|
|
plist = []
|
|
|
|
if io.is_colab():
|
|
previews = self.get_previews()
|
|
for i in range(len(previews)):
|
|
name, bgr = previews[i]
|
|
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]
|
|
|
|
if self.write_preview_history:
|
|
plist += [ (self.get_static_preview(), str (self.preview_history_path / ('%.6d.jpg' % (self.iter))) ) ]
|
|
|
|
for preview, filepath in plist:
|
|
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter, preview.shape[1], preview.shape[2])
|
|
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
|
|
cv2_imwrite (filepath, img )
|
|
|
|
self.on_success_train_one_iter()
|
|
|
|
self.iter += 1
|
|
|
|
return self.iter, iter_time
|
|
|
|
def pass_one_iter(self):
|
|
self.last_sample = self.generate_next_sample()
|
|
|
|
def finalize(self):
|
|
nnlib.finalize_all()
|
|
|
|
def is_first_run(self):
|
|
return self.iter == 0
|
|
|
|
def is_debug(self):
|
|
return self.debug
|
|
|
|
def set_batch_size(self, batch_size):
|
|
self.batch_size = batch_size
|
|
|
|
def get_batch_size(self):
|
|
return self.batch_size
|
|
|
|
def get_iter(self):
|
|
return self.iter
|
|
|
|
def get_loss_history(self):
|
|
return self.loss_history
|
|
|
|
def set_training_data_generators (self, generator_list):
|
|
self.generator_list = generator_list
|
|
|
|
def get_training_data_generators (self):
|
|
return self.generator_list
|
|
|
|
def get_model_root_path(self):
|
|
return self.model_path
|
|
|
|
def get_strpath_storage_for_file(self, filename):
|
|
if self.device_args['force_gpu_idx'] == -1:
|
|
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
|
|
else:
|
|
return str( self.model_path / ( str(self.device_args['force_gpu_idx']) + '_' + self.get_model_name() + '_' + filename) )
|
|
|
|
def set_vram_batch_requirements (self, d):
|
|
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
|
|
keys = [x for x in d.keys()]
|
|
|
|
if self.device_config.cpu_only:
|
|
if self.batch_size == 0:
|
|
self.batch_size = 2
|
|
else:
|
|
if self.batch_size == 0:
|
|
for x in keys:
|
|
if self.device_config.gpu_vram_gb[0] <= x:
|
|
self.batch_size = d[x]
|
|
break
|
|
|
|
if self.batch_size == 0:
|
|
self.batch_size = d[ keys[-1] ]
|
|
|
|
@staticmethod
|
|
def get_loss_history_preview(loss_history, iter, w, c):
|
|
loss_history = np.array (loss_history.copy())
|
|
|
|
lh_height = 100
|
|
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
|
|
|
|
if len(loss_history) != 0:
|
|
loss_count = len(loss_history[0])
|
|
lh_len = len(loss_history)
|
|
|
|
l_per_col = lh_len / w
|
|
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p],
|
|
*[ loss_history[i_ab][p]
|
|
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
|
|
]
|
|
)
|
|
for p in range(loss_count)
|
|
]
|
|
for col in range(w)
|
|
]
|
|
|
|
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
|
|
*[ loss_history[i_ab][p]
|
|
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
|
|
]
|
|
)
|
|
for p in range(loss_count)
|
|
]
|
|
for col in range(w)
|
|
]
|
|
|
|
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2
|
|
|
|
for col in range(0, w):
|
|
for p in range(0,loss_count):
|
|
point_color = [1.0]*c
|
|
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )
|
|
|
|
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
|
|
ph_max = np.clip( ph_max, 0, lh_height-1 )
|
|
|
|
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
|
|
ph_min = np.clip( ph_min, 0, lh_height-1 )
|
|
|
|
for ph in range(ph_min, ph_max+1):
|
|
lh_img[ (lh_height-ph-1), col ] = point_color
|
|
|
|
lh_lines = 5
|
|
lh_line_height = (lh_height-1)/lh_lines
|
|
for i in range(0,lh_lines+1):
|
|
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c
|
|
|
|
last_line_t = int((lh_lines-1)*lh_line_height)
|
|
last_line_b = int(lh_lines*lh_line_height)
|
|
|
|
lh_text = 'Iter: %d' % (iter) if iter != 0 else ''
|
|
|
|
lh_img[last_line_t:last_line_b, 0:w] += imagelib.get_text_image ( (last_line_b-last_line_t,w,c), lh_text, color=[0.8]*c )
|
|
return lh_img
|