mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
934 lines
32 KiB
Python
934 lines
32 KiB
Python
import multiprocessing
|
|
import operator
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
from functools import cmp_to_key
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from numpy import linalg as npla
|
|
|
|
import imagelib
|
|
from facelib import LandmarksProcessor
|
|
from imagelib import estimate_sharpness
|
|
from interact import interact as io
|
|
from joblib import Subprocessor
|
|
from nnlib import VGGFace, nnlib
|
|
from utils import Path_utils
|
|
from utils.cv2_utils import *
|
|
from DFLIMG import *
|
|
|
|
class BlurEstimatorSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.log_info('Running on %s.' % (client_dict['device_name']) )
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
filepath = Path( data[0] )
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is not None:
|
|
image = cv2_imread( str(filepath) )
|
|
return [ str(filepath), estimate_sharpness(image) ]
|
|
else:
|
|
self.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
return [ str(filepath), 0 ]
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
#return string identificator of your data
|
|
return data[0]
|
|
|
|
#override
|
|
def __init__(self, input_data ):
|
|
self.input_data = input_data
|
|
self.img_list = []
|
|
self.trash_img_list = []
|
|
super().__init__('BlurEstimator', BlurEstimatorSubprocessor.Cli, 60)
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("", len (self.input_data))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close ()
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(0, multiprocessing.cpu_count() ):
|
|
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i),
|
|
}
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.input_data) > 0:
|
|
return self.input_data.pop(0)
|
|
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.input_data.insert(0, data)
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
if result[1] == 0:
|
|
self.trash_img_list.append ( result )
|
|
else:
|
|
self.img_list.append ( result )
|
|
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.img_list, self.trash_img_list
|
|
|
|
|
|
def sort_by_blur(input_path):
|
|
io.log_info ("Sorting by blur...")
|
|
|
|
img_list = [ (filename,[]) for filename in Path_utils.get_image_paths(input_path) ]
|
|
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list).run()
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_face(input_path):
|
|
io.log_info ("Sorting by face similarity...")
|
|
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
trash_img_list.append ( [str(filepath)] )
|
|
continue
|
|
|
|
img_list.append( [str(filepath), dflimg.get_landmarks()] )
|
|
|
|
|
|
img_list_len = len(img_list)
|
|
for i in io.progress_bar_generator ( range(0, img_list_len-1), "Sorting"):
|
|
min_score = float("inf")
|
|
j_min_score = i+1
|
|
for j in range(i+1,len(img_list)):
|
|
|
|
fl1 = img_list[i][1]
|
|
fl2 = img_list[j][1]
|
|
score = np.sum ( np.absolute ( (fl2 - fl1).flatten() ) )
|
|
|
|
if score < min_score:
|
|
min_score = score
|
|
j_min_score = j
|
|
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_face_dissim(input_path):
|
|
|
|
io.log_info ("Sorting by face dissimilarity...")
|
|
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
trash_img_list.append ( [str(filepath)] )
|
|
continue
|
|
|
|
img_list.append( [str(filepath), dflimg.get_landmarks(), 0 ] )
|
|
|
|
img_list_len = len(img_list)
|
|
for i in io.progress_bar_generator( range(img_list_len-1), "Sorting"):
|
|
score_total = 0
|
|
for j in range(i+1,len(img_list)):
|
|
if i == j:
|
|
continue
|
|
fl1 = img_list[i][1]
|
|
fl2 = img_list[j][1]
|
|
score_total += np.sum ( np.absolute ( (fl2 - fl1).flatten() ) )
|
|
|
|
img_list[i][2] = score_total
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_face_yaw(input_path):
|
|
io.log_info ("Sorting by face yaw...")
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
trash_img_list.append ( [str(filepath)] )
|
|
continue
|
|
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
|
|
|
|
img_list.append( [str(filepath), yaw ] )
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_face_pitch(input_path):
|
|
io.log_info ("Sorting by face pitch...")
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
trash_img_list.append ( [str(filepath)] )
|
|
continue
|
|
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
|
|
|
|
img_list.append( [str(filepath), pitch ] )
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
|
|
return img_list, trash_img_list
|
|
|
|
class HistSsimSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.log_info ('Running on %s.' % (client_dict['device_name']) )
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
img_list = []
|
|
for x in data:
|
|
img = cv2_imread(x)
|
|
img_list.append ([x, cv2.calcHist([img], [0], None, [256], [0, 256]),
|
|
cv2.calcHist([img], [1], None, [256], [0, 256]),
|
|
cv2.calcHist([img], [2], None, [256], [0, 256])
|
|
])
|
|
|
|
img_list_len = len(img_list)
|
|
for i in range(img_list_len-1):
|
|
min_score = float("inf")
|
|
j_min_score = i+1
|
|
for j in range(i+1,len(img_list)):
|
|
score = cv2.compareHist(img_list[i][1], img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) + \
|
|
cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) + \
|
|
cv2.compareHist(img_list[i][3], img_list[j][3], cv2.HISTCMP_BHATTACHARYYA)
|
|
if score < min_score:
|
|
min_score = score
|
|
j_min_score = j
|
|
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]
|
|
|
|
self.progress_bar_inc(1)
|
|
|
|
return img_list
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
return "Bunch of images"
|
|
|
|
#override
|
|
def __init__(self, img_list ):
|
|
self.img_list = img_list
|
|
self.img_list_len = len(img_list)
|
|
|
|
slice_count = 20000
|
|
sliced_count = self.img_list_len // slice_count
|
|
|
|
if sliced_count > 12:
|
|
sliced_count = 11.9
|
|
slice_count = int(self.img_list_len / sliced_count)
|
|
sliced_count = self.img_list_len // slice_count
|
|
|
|
self.img_chunks_list = [ self.img_list[i*slice_count : (i+1)*slice_count] for i in range(sliced_count) ] + \
|
|
[ self.img_list[sliced_count*slice_count:] ]
|
|
|
|
self.result = []
|
|
super().__init__('HistSsim', HistSsimSubprocessor.Cli, 0)
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range( len(self.img_chunks_list) ):
|
|
yield 'CPU%d' % (i), {'i':i}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i)
|
|
}
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Sorting", len(self.img_list))
|
|
io.progress_bar_inc(len(self.img_chunks_list))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.img_chunks_list) > 0:
|
|
return self.img_chunks_list.pop(0)
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
raise Exception("Fail to process data. Decrease number of images and try again.")
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
self.result += result
|
|
return 0
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result
|
|
|
|
def sort_by_hist(input_path):
|
|
io.log_info ("Sorting by histogram similarity...")
|
|
img_list = HistSsimSubprocessor(Path_utils.get_image_paths(input_path)).run()
|
|
return img_list
|
|
|
|
class HistDissimSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.log_info ('Running on %s.' % (client_dict['device_name']) )
|
|
self.img_list = client_dict['img_list']
|
|
self.img_list_len = len(self.img_list)
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
i = data[0]
|
|
score_total = 0
|
|
for j in range( 0, self.img_list_len):
|
|
if i == j:
|
|
continue
|
|
score_total += cv2.compareHist(self.img_list[i][1], self.img_list[j][1], cv2.HISTCMP_BHATTACHARYYA)
|
|
|
|
return score_total
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
#return string identificator of your data
|
|
return self.img_list[data[0]][0]
|
|
|
|
#override
|
|
def __init__(self, img_list ):
|
|
self.img_list = img_list
|
|
self.img_list_range = [i for i in range(0, len(img_list) )]
|
|
self.result = []
|
|
super().__init__('HistDissim', HistDissimSubprocessor.Cli, 60)
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Sorting", len (self.img_list) )
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
|
|
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i),
|
|
'img_list' : self.img_list
|
|
}
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.img_list_range) > 0:
|
|
return [self.img_list_range.pop(0)]
|
|
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.img_list_range.insert(0, data[0])
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
self.img_list[data[0]][2] = result
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.img_list
|
|
|
|
def sort_by_hist_dissim(input_path):
|
|
io.log_info ("Sorting by histogram dissimilarity...")
|
|
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
image = cv2_imread(str(filepath))
|
|
|
|
if dflimg is not None:
|
|
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
|
|
image = (image*face_mask).astype(np.uint8)
|
|
|
|
img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])
|
|
|
|
img_list = HistDissimSubprocessor(img_list).run()
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_brightness(input_path):
|
|
io.log_info ("Sorting by brightness...")
|
|
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,2].flatten() )] for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading") ]
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
return img_list
|
|
|
|
def sort_by_hue(input_path):
|
|
io.log_info ("Sorting by hue...")
|
|
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten() )] for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading") ]
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
return img_list
|
|
|
|
def sort_by_black(input_path):
|
|
io.log_info ("Sorting by amount of black pixels...")
|
|
|
|
img_list = []
|
|
for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
img = cv2_imread(x)
|
|
img_list.append ([x, img[(img == 0)].size ])
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=False)
|
|
|
|
return img_list
|
|
|
|
def sort_by_origname(input_path):
|
|
io.log_info ("Sort by original filename...")
|
|
|
|
img_list = []
|
|
trash_img_list = []
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
|
trash_img_list.append( [str(filepath)] )
|
|
continue
|
|
|
|
img_list.append( [str(filepath), dflimg.get_source_filename()] )
|
|
|
|
io.log_info ("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(1))
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_oneface_in_image(input_path):
|
|
io.log_info ("Sort by one face in images...")
|
|
image_paths = Path_utils.get_image_paths(input_path)
|
|
a = np.array ([ ( int(x[0]), int(x[1]) ) \
|
|
for x in [ Path(filepath).stem.split('_') for filepath in image_paths ] if len(x) == 2
|
|
])
|
|
if len(a) > 0:
|
|
idxs = np.ndarray.flatten ( np.argwhere ( a[:,1] != 0 ) )
|
|
idxs = np.unique ( a[idxs][:,0] )
|
|
idxs = np.ndarray.flatten ( np.argwhere ( np.array([ x[0] in idxs for x in a ]) == True ) )
|
|
if len(idxs) > 0:
|
|
io.log_info ("Found %d images." % (len(idxs)) )
|
|
img_list = [ (path,) for i,path in enumerate(image_paths) if i not in idxs ]
|
|
trash_img_list = [ (image_paths[x],) for x in idxs ]
|
|
return img_list, trash_img_list
|
|
return [], []
|
|
|
|
class FinalLoaderSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.log_info ('Running on %s.' % (client_dict['device_name']) )
|
|
self.include_by_blur = client_dict['include_by_blur']
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
filepath = Path(data[0])
|
|
|
|
try:
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None:
|
|
self.log_err("%s is not a dfl image file" % (filepath.name))
|
|
return [ 1, [str(filepath)] ]
|
|
|
|
bgr = cv2_imread(str(filepath))
|
|
if bgr is None:
|
|
raise Exception ("Unable to load %s" % (filepath.name) )
|
|
|
|
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
|
|
sharpness = estimate_sharpness(gray) if self.include_by_blur else 0
|
|
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
|
|
|
|
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
|
|
except Exception as e:
|
|
self.log_err (e)
|
|
return [ 1, [str(filepath)] ]
|
|
|
|
return [ 0, [str(filepath), sharpness, hist, yaw, pitch ] ]
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
#return string identificator of your data
|
|
return data[0]
|
|
|
|
#override
|
|
def __init__(self, img_list, include_by_blur ):
|
|
self.img_list = img_list
|
|
|
|
self.include_by_blur = include_by_blur
|
|
self.result = []
|
|
self.result_trash = []
|
|
|
|
super().__init__('FinalLoader', FinalLoaderSubprocessor.Cli, 60)
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Loading", len (self.img_list))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
|
|
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i),
|
|
'include_by_blur': self.include_by_blur
|
|
}
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.img_list) > 0:
|
|
return [self.img_list.pop(0)]
|
|
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.img_list.insert(0, data[0])
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
if result[0] == 0:
|
|
self.result.append (result[1])
|
|
else:
|
|
self.result_trash.append (result[1])
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result, self.result_trash
|
|
|
|
class FinalHistDissimSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.log_info ('Running on %s.' % (client_dict['device_name']) )
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
idx, pitch_yaw_img_list = data
|
|
|
|
for p in range ( len(pitch_yaw_img_list) ):
|
|
|
|
img_list = pitch_yaw_img_list[p]
|
|
if img_list is not None:
|
|
for i in range( len(img_list) ):
|
|
score_total = 0
|
|
for j in range( len(img_list) ):
|
|
if i == j:
|
|
continue
|
|
score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA)
|
|
img_list[i][3] = score_total
|
|
|
|
pitch_yaw_img_list[p] = sorted(img_list, key=operator.itemgetter(3), reverse=True)
|
|
|
|
return idx, pitch_yaw_img_list
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
return "Bunch of images"
|
|
|
|
#override
|
|
def __init__(self, pitch_yaw_sample_list ):
|
|
self.pitch_yaw_sample_list = pitch_yaw_sample_list
|
|
self.pitch_yaw_sample_list_len = len(pitch_yaw_sample_list)
|
|
|
|
self.pitch_yaw_sample_list_idxs = [ i for i in range(self.pitch_yaw_sample_list_len) if self.pitch_yaw_sample_list[i] is not None ]
|
|
self.result = [ None for _ in range(self.pitch_yaw_sample_list_len) ]
|
|
super().__init__('FinalHistDissimSubprocessor', FinalHistDissimSubprocessor.Cli)
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(min(multiprocessing.cpu_count(), 8) ):
|
|
yield 'CPU%d' % (i), {'i':i}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i)
|
|
}
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Sort by hist-dissim", len(self.pitch_yaw_sample_list_idxs) )
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.pitch_yaw_sample_list_idxs) > 0:
|
|
idx = self.pitch_yaw_sample_list_idxs.pop(0)
|
|
|
|
return idx, self.pitch_yaw_sample_list[idx]
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.pitch_yaw_sample_list_idxs.insert(0, data[0])
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
idx, yaws_sample_list = data
|
|
self.result[idx] = yaws_sample_list
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result
|
|
|
|
def sort_final(input_path, include_by_blur=True):
|
|
io.log_info ("Performing final sort.")
|
|
|
|
target_count = io.input_int ("Target number of images? (default:2000) : ", 2000)
|
|
|
|
img_list, trash_img_list = FinalLoaderSubprocessor( Path_utils.get_image_paths(input_path), include_by_blur ).run()
|
|
final_img_list = []
|
|
|
|
grads = 128
|
|
imgs_per_grad = round (target_count / grads)
|
|
|
|
grads_space = np.linspace (-1.0,1.0,grads)
|
|
|
|
yaws_sample_list = [None]*grads
|
|
for g in io.progress_bar_generator ( range(grads), "Sort by yaw"):
|
|
yaw = grads_space[g]
|
|
next_yaw = grads_space[g+1] if g < grads-1 else yaw
|
|
|
|
yaw_samples = []
|
|
for img in img_list:
|
|
s_yaw = -img[3]
|
|
if (g == 0 and s_yaw < next_yaw) or \
|
|
(g < grads-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
|
|
(g == grads-1 and s_yaw >= yaw):
|
|
yaw_samples += [ img ]
|
|
if len(yaw_samples) > 0:
|
|
yaws_sample_list[g] = yaw_samples
|
|
|
|
total_lack = 0
|
|
for g in io.progress_bar_generator ( range(grads), ""):
|
|
img_list = yaws_sample_list[g]
|
|
img_list_len = len(img_list) if img_list is not None else 0
|
|
|
|
lack = imgs_per_grad - img_list_len
|
|
total_lack += max(lack, 0)
|
|
|
|
imgs_per_grad += total_lack // grads
|
|
|
|
if include_by_blur:
|
|
sharpned_imgs_per_grad = imgs_per_grad*10
|
|
for g in io.progress_bar_generator ( range (grads), "Sort by blur"):
|
|
img_list = yaws_sample_list[g]
|
|
if img_list is None:
|
|
continue
|
|
|
|
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
|
|
|
|
if len(img_list) > sharpned_imgs_per_grad:
|
|
trash_img_list += img_list[sharpned_imgs_per_grad:]
|
|
img_list = img_list[0:sharpned_imgs_per_grad]
|
|
|
|
yaws_sample_list[g] = img_list
|
|
|
|
|
|
yaw_pitch_sample_list = [None]*grads
|
|
pitch_grads = imgs_per_grad
|
|
|
|
for g in io.progress_bar_generator ( range (grads), "Sort by pitch"):
|
|
img_list = yaws_sample_list[g]
|
|
if img_list is None:
|
|
continue
|
|
|
|
pitch_sample_list = [None]*pitch_grads
|
|
|
|
grads_space = np.linspace (-1.0,1.0, pitch_grads )
|
|
|
|
for pg in range (pitch_grads):
|
|
|
|
pitch = grads_space[pg]
|
|
next_pitch = grads_space[pg+1] if pg < pitch_grads-1 else pitch
|
|
|
|
pitch_samples = []
|
|
for img in img_list:
|
|
s_pitch = img[4]
|
|
if (pg == 0 and s_pitch < next_pitch) or \
|
|
(pg < pitch_grads-1 and s_pitch >= pitch and s_pitch < next_pitch) or \
|
|
(pg == pitch_grads-1 and s_pitch >= pitch):
|
|
pitch_samples += [ img ]
|
|
|
|
if len(pitch_samples) > 0:
|
|
pitch_sample_list[pg] = pitch_samples
|
|
yaw_pitch_sample_list[g] = pitch_sample_list
|
|
|
|
yaw_pitch_sample_list = FinalHistDissimSubprocessor(yaw_pitch_sample_list).run()
|
|
|
|
for g in io.progress_bar_generator (range (grads), "Fetching the best"):
|
|
pitch_sample_list = yaw_pitch_sample_list[g]
|
|
if pitch_sample_list is None:
|
|
continue
|
|
|
|
n = imgs_per_grad
|
|
|
|
while n > 0:
|
|
n_prev = n
|
|
for pg in range(pitch_grads):
|
|
img_list = pitch_sample_list[pg]
|
|
if img_list is None:
|
|
continue
|
|
final_img_list += [ img_list.pop(0) ]
|
|
if len(img_list) == 0:
|
|
pitch_sample_list[pg] = None
|
|
n -= 1
|
|
if n == 0:
|
|
break
|
|
if n_prev == n:
|
|
break
|
|
|
|
for pg in range(pitch_grads):
|
|
img_list = pitch_sample_list[pg]
|
|
if img_list is None:
|
|
continue
|
|
trash_img_list += img_list
|
|
|
|
return final_img_list, trash_img_list
|
|
|
|
|
|
def sort_by_vggface(input_path):
|
|
io.log_info ("Sorting by face similarity using VGGFace model...")
|
|
|
|
model = VGGFace()
|
|
|
|
final_img_list = []
|
|
trash_img_list = []
|
|
|
|
image_paths = Path_utils.get_image_paths(input_path)
|
|
img_list = [ (x,) for x in image_paths ]
|
|
img_list_len = len(img_list)
|
|
img_list_range = [*range(img_list_len)]
|
|
|
|
feats = [None]*img_list_len
|
|
for i in io.progress_bar_generator(img_list_range, "Loading"):
|
|
img = cv2_imread( img_list[i][0] ).astype(np.float32)
|
|
img = imagelib.normalize_channels (img, 3)
|
|
img = cv2.resize (img, (224,224) )
|
|
img = img[..., ::-1]
|
|
img[..., 0] -= 93.5940
|
|
img[..., 1] -= 104.7624
|
|
img[..., 2] -= 129.1863
|
|
feats[i] = model.predict( img[None,...] )[0]
|
|
|
|
tmp = np.zeros( (img_list_len,) )
|
|
float_inf = float("inf")
|
|
for i in io.progress_bar_generator ( range(img_list_len-1), "Sorting" ):
|
|
i_feat = feats[i]
|
|
|
|
for j in img_list_range:
|
|
tmp[j] = npla.norm(i_feat-feats[j]) if j >= i+1 else float_inf
|
|
|
|
idx = np.argmin(tmp)
|
|
|
|
img_list[i+1], img_list[idx] = img_list[idx], img_list[i+1]
|
|
feats[i+1], feats[idx] = feats[idx], feats[i+1]
|
|
|
|
return img_list, trash_img_list
|
|
|
|
def sort_by_absdiff(input_path):
|
|
io.log_info ("Sorting by absolute difference...")
|
|
|
|
is_sim = io.input_bool ("Sort by similar? ( y/n ?:help skip:y ) : ", True, help_message="Otherwise sort by dissimilar.")
|
|
|
|
from nnlib import nnlib
|
|
exec( nnlib.import_all( device_config=nnlib.device.Config() ), locals(), globals() )
|
|
|
|
image_paths = Path_utils.get_image_paths(input_path)
|
|
image_paths_len = len(image_paths)
|
|
|
|
batch_size = 1024
|
|
batch_size_remain = image_paths_len % batch_size
|
|
|
|
i_t = Input ( (256,256,3) )
|
|
j_t = Input ( (256,256,3) )
|
|
|
|
outputs = []
|
|
for i in range(batch_size):
|
|
outputs += [ K.sum( K.abs(i_t-j_t[i]), axis=[1,2,3] ) ]
|
|
|
|
func_bs_full = K.function ( [i_t,j_t], outputs)
|
|
|
|
outputs = []
|
|
for i in range(batch_size_remain):
|
|
outputs += [ K.sum( K.abs(i_t-j_t[i]), axis=[1,2,3] ) ]
|
|
|
|
func_bs_remain = K.function ( [i_t,j_t], outputs)
|
|
|
|
import h5py
|
|
db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5'
|
|
db_file = h5py.File( str(db_file_path), "w")
|
|
db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip")
|
|
|
|
|
|
pg_len = image_paths_len // batch_size
|
|
if batch_size_remain != 0:
|
|
pg_len += 1
|
|
|
|
pg_len = int( ( pg_len*pg_len - pg_len ) / 2 + pg_len )
|
|
|
|
io.progress_bar ("Computing", pg_len)
|
|
j=0
|
|
while j < image_paths_len:
|
|
j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ]
|
|
j_images_len = len(j_images)
|
|
|
|
func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full
|
|
|
|
i=0
|
|
while i < image_paths_len:
|
|
if i >= j:
|
|
i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ]
|
|
i_images_len = len(i_images)
|
|
result = func ([i_images,j_images])
|
|
db[j:j+j_images_len,i:i+i_images_len] = np.array(result)
|
|
io.progress_bar_inc(1)
|
|
|
|
i += batch_size
|
|
db_file.flush()
|
|
j += batch_size
|
|
|
|
io.progress_bar_close()
|
|
|
|
next_id = 0
|
|
sorted = [next_id]
|
|
for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ):
|
|
id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] )
|
|
id_ar = np.argsort(id_ar)
|
|
|
|
|
|
next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1]
|
|
sorted += [next_id]
|
|
db_file.close()
|
|
db_file_path.unlink()
|
|
|
|
img_list = [ (image_paths[x],) for x in sorted]
|
|
return img_list, []
|
|
|
|
def final_process(input_path, img_list, trash_img_list):
|
|
if len(trash_img_list) != 0:
|
|
parent_input_path = input_path.parent
|
|
trash_path = parent_input_path / (input_path.stem + '_trash')
|
|
trash_path.mkdir (exist_ok=True)
|
|
|
|
io.log_info ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) )
|
|
|
|
for filename in Path_utils.get_image_paths(trash_path):
|
|
Path(filename).unlink()
|
|
|
|
for i in io.progress_bar_generator( range(len(trash_img_list)), "Moving trash", leave=False):
|
|
src = Path (trash_img_list[i][0])
|
|
dst = trash_path / src.name
|
|
try:
|
|
src.rename (dst)
|
|
except:
|
|
io.log_info ('fail to trashing %s' % (src.name) )
|
|
|
|
io.log_info ("")
|
|
|
|
if len(img_list) != 0:
|
|
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming", leave=False):
|
|
src = Path (img_list[i][0])
|
|
dst = input_path / ('%.5d_%s' % (i, src.name ))
|
|
try:
|
|
src.rename (dst)
|
|
except:
|
|
io.log_info ('fail to rename %s' % (src.name) )
|
|
|
|
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming"):
|
|
src = Path (img_list[i][0])
|
|
src = input_path / ('%.5d_%s' % (i, src.name))
|
|
dst = input_path / ('%.5d%s' % (i, src.suffix))
|
|
try:
|
|
src.rename (dst)
|
|
except:
|
|
io.log_info ('fail to rename %s' % (src.name) )
|
|
|
|
def main (input_path, sort_by_method):
|
|
input_path = Path(input_path)
|
|
sort_by_method = sort_by_method.lower()
|
|
|
|
io.log_info ("Running sort tool.\r\n")
|
|
|
|
img_list = []
|
|
trash_img_list = []
|
|
if sort_by_method == 'blur': img_list, trash_img_list = sort_by_blur (input_path)
|
|
elif sort_by_method == 'face': img_list, trash_img_list = sort_by_face (input_path)
|
|
elif sort_by_method == 'face-dissim': img_list, trash_img_list = sort_by_face_dissim (input_path)
|
|
elif sort_by_method == 'face-yaw': img_list, trash_img_list = sort_by_face_yaw (input_path)
|
|
elif sort_by_method == 'face-pitch': img_list, trash_img_list = sort_by_face_pitch (input_path)
|
|
elif sort_by_method == 'hist': img_list = sort_by_hist (input_path)
|
|
elif sort_by_method == 'hist-dissim': img_list, trash_img_list = sort_by_hist_dissim (input_path)
|
|
elif sort_by_method == 'brightness': img_list = sort_by_brightness (input_path)
|
|
elif sort_by_method == 'hue': img_list = sort_by_hue (input_path)
|
|
elif sort_by_method == 'black': img_list = sort_by_black (input_path)
|
|
elif sort_by_method == 'origname': img_list, trash_img_list = sort_by_origname (input_path)
|
|
elif sort_by_method == 'oneface': img_list, trash_img_list = sort_by_oneface_in_image (input_path)
|
|
elif sort_by_method == 'vggface': img_list, trash_img_list = sort_by_vggface (input_path)
|
|
elif sort_by_method == 'absdiff': img_list, trash_img_list = sort_by_absdiff (input_path)
|
|
elif sort_by_method == 'final': img_list, trash_img_list = sort_final (input_path)
|
|
elif sort_by_method == 'final-no-blur': img_list, trash_img_list = sort_final (input_path, include_by_blur=False)
|
|
|
|
final_process (input_path, img_list, trash_img_list)
|