DeepFaceLab/mainscripts/FacesetEnhancer.py
2019-12-27 13:36:01 +04:00

169 lines
6.0 KiB
Python

import multiprocessing
import shutil
from DFLIMG import *
from interact import interact as io
from joblib import Subprocessor
from nnlib import nnlib
from utils import Path_utils
from utils.cv2_utils import *
class FacesetEnhancerSubprocessor(Subprocessor):
#override
def __init__(self, image_paths, output_dirpath, multi_gpu=False, cpu_only=False):
self.image_paths = image_paths
self.output_dirpath = output_dirpath
self.result = []
self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(multi_gpu, cpu_only)
super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)
#override
def on_clients_initialized(self):
io.progress_bar (None, len (self.image_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
base_dict = {'output_dirpath':self.output_dirpath}
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name
client_dict['device_type'] = device_type
yield client_dict['device_name'], {}, client_dict
#override
def get_data(self, host_dict):
if len (self.image_paths) > 0:
return self.image_paths.pop(0)
#override
def on_data_return (self, host_dict, data):
self.image_paths.insert(0, data)
#override
def on_result (self, host_dict, data, result):
io.progress_bar_inc(1)
if result[0] == 1:
self.result +=[ (result[1], result[2]) ]
#override
def get_result(self):
return self.result
@staticmethod
def get_devices_for_config (multi_gpu, cpu_only):
backend = nnlib.device.backend
if 'cpu' in backend:
cpu_only = True
if not cpu_only and backend == "plaidML":
cpu_only = True
if not cpu_only:
devices = []
if multi_gpu:
devices = nnlib.device.getValidDevicesWithAtLeastTotalMemoryGB(2)
if len(devices) == 0:
idx = nnlib.device.getBestValidDeviceIdx()
if idx != -1:
devices = [idx]
if len(devices) == 0:
cpu_only = True
result = []
for idx in devices:
dev_name = nnlib.device.getDeviceName(idx)
dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
result += [ (idx, 'GPU', dev_name, dev_vram) ]
return result
if cpu_only:
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
device_idx = client_dict['device_idx']
cpu_only = client_dict['device_type'] == 'CPU'
self.output_dirpath = client_dict['output_dirpath']
device_config = nnlib.DeviceConfig ( cpu_only=cpu_only, force_gpu_idx=device_idx, allow_growth=True)
nnlib.import_all (device_config)
device_vram = device_config.gpu_vram_gb[0]
intro_str = 'Running on %s.' % (client_dict['device_name'])
if not cpu_only and device_vram <= 2:
intro_str += " Recommended to close all programs using this device."
self.log_info (intro_str)
from facelib import FaceEnhancer
self.fe = FaceEnhancer()
#override
def process_data(self, filepath):
try:
dflimg = DFLIMG.load (filepath)
if dflimg is None:
self.log_err ("%s is not a dfl image file" % (filepath.name) )
else:
img = cv2_imread(filepath).astype(np.float32) / 255.0
img = self.fe.enhance(img)
img = np.clip (img*255, 0, 255).astype(np.uint8)
output_filepath = self.output_dirpath / filepath.name
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
dflimg.embed_and_set ( str(output_filepath) )
return (1, filepath, output_filepath)
except:
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
return (0, filepath, None)
def process_folder ( dirpath, multi_gpu=False, cpu_only=False ):
output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
output_dirpath.mkdir (exist_ok=True, parents=True)
dirpath_parts = '/'.join( dirpath.parts[-2:])
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
io.log_info (f"Enhancing faceset in {dirpath_parts}")
io.log_info ( f"Processing to {output_dirpath_parts}")
output_images_paths = Path_utils.get_image_paths(output_dirpath)
if len(output_images_paths) > 0:
for filename in output_images_paths:
Path(filename).unlink()
image_paths = [Path(x) for x in Path_utils.get_image_paths( dirpath )]
result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, multi_gpu=multi_gpu, cpu_only=cpu_only).run()
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ? (y/n skip:y) : ", True)
if is_merge:
io.log_info (f"Copying processed files to {dirpath_parts}")
for (filepath, output_filepath) in result:
try:
shutil.copy (output_filepath, filepath)
except:
pass
io.log_info (f"Removing {output_dirpath_parts}")
shutil.rmtree(output_dirpath)