DeepFaceLab/imagelib/RankSRGAN.py
iperov c39ed9d9c9 updated pdf manuals for AVATAR model.
Avatar converter: added super resolution option.
All converters: super resolution DCSCN network is now replaced by RankSRGAN
2019-08-25 17:43:52 +04:00

109 lines
4.2 KiB
Python

import numpy as np
import cv2
from pathlib import Path
from nnlib import nnlib
from interact import interact as io
class RankSRGAN():
def __init__(self):
exec( nnlib.import_all(), locals(), globals() )
class PixelShufflerTorch(KL.Layer):
def __init__(self, size=(2, 2), data_format='channels_last', **kwargs):
super(PixelShufflerTorch, self).__init__(**kwargs)
self.data_format = data_format
self.size = size
def call(self, inputs):
input_shape = K.shape(inputs)
if K.int_shape(input_shape)[0] != 4:
raise ValueError('Inputs should have rank 4; Received input shape:', str(K.int_shape(inputs)))
batch_size, h, w, c = input_shape[0], input_shape[1], input_shape[2], K.int_shape(inputs)[-1]
rh, rw = self.size
oh, ow = h * rh, w * rw
oc = c // (rh * rw)
out = inputs
out = K.permute_dimensions(out, (0, 3, 1, 2)) #NCHW
out = K.reshape(out, (batch_size, oc, rh, rw, h, w))
out = K.permute_dimensions(out, (0, 1, 4, 2, 5, 3))
out = K.reshape(out, (batch_size, oc, oh, ow))
out = K.permute_dimensions(out, (0, 2, 3, 1))
return out
def compute_output_shape(self, input_shape):
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' + str(4) + '; Received input shape:', str(input_shape))
height = input_shape[1] * self.size[0] if input_shape[1] is not None else None
width = input_shape[2] * self.size[1] if input_shape[2] is not None else None
channels = input_shape[3] // self.size[0] // self.size[1]
if channels * self.size[0] * self.size[1] != input_shape[3]:
raise ValueError('channels of input and size are incompatible')
return (input_shape[0],
height,
width,
channels)
def get_config(self):
config = {'size': self.size,
'data_format': self.data_format}
base_config = super(PixelShufflerTorch, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def res_block(inp, name_prefix):
x = inp
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', activation="relu", name=name_prefix+"0")(x)
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name=name_prefix+"2")(x)
return Add()([inp,x])
ndf = 64
nb = 16
inp = Input ( (None, None,3) )
x = inp
x = x0 = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name="model0")(x)
for i in range(nb):
x = res_block(x, "model1%.2d" %i )
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name="model1160")(x)
x = Add()([x0,x])
x = ReLU() ( PixelShufflerTorch() ( Conv2D (ndf*4, kernel_size=3, strides=1, padding='same', name="model2")(x) ) )
x = ReLU() ( PixelShufflerTorch() ( Conv2D (ndf*4, kernel_size=3, strides=1, padding='same', name="model5")(x) ) )
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', activation="relu", name="model8")(x)
x = Conv2D (3, kernel_size=3, strides=1, padding='same', name="model10")(x)
self.model = Model(inp, x )
self.model.load_weights ( Path(__file__).parent / 'RankSRGAN.h5')
def upscale(self, img, scale=2, is_bgr=True, is_float=True):
if scale not in [2,4]:
raise ValueError ("RankSRGAN: supported scale are 2 or 4.")
if not is_bgr:
img = img[...,::-1]
if not is_float:
img /= 255.0
h, w = img.shape[:2]
ch = img.shape[2] if len(img.shape) >= 3 else 1
output = self.model.predict([img[None,...]])[0]
if scale == 2:
output = cv2.resize (output, (w*scale, h*scale), cv2.INTER_CUBIC)
if not is_float:
output = np.clip (output * 255.0, 0, 255.0)
if not is_bgr:
output = output[...,::-1]
return output