mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
225 lines
8.4 KiB
Python
225 lines
8.4 KiB
Python
import os
|
|
import traceback
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from numpy import linalg as npla
|
|
|
|
from facelib import FaceType, LandmarksProcessor
|
|
from nnlib import nnlib
|
|
|
|
"""
|
|
ported from https://github.com/1adrianb/face-alignment
|
|
"""
|
|
class FANExtractor(object):
|
|
def __init__ (self):
|
|
pass
|
|
|
|
def __enter__(self):
|
|
keras_model_path = Path(__file__).parent / "2DFAN-4.h5"
|
|
if not keras_model_path.exists():
|
|
return None
|
|
|
|
exec( nnlib.import_all(), locals(), globals() )
|
|
self.model = FANExtractor.BuildModel()
|
|
self.model.load_weights(str(keras_model_path))
|
|
|
|
return self
|
|
|
|
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
|
|
del self.model
|
|
return False #pass exception between __enter__ and __exit__ to outter level
|
|
|
|
def extract (self, input_image, rects, second_pass_extractor=None, is_bgr=True, multi_sample=False):
|
|
if len(rects) == 0:
|
|
return []
|
|
|
|
if is_bgr:
|
|
input_image = input_image[:,:,::-1]
|
|
is_bgr = False
|
|
|
|
(h, w, ch) = input_image.shape
|
|
|
|
landmarks = []
|
|
for (left, top, right, bottom) in rects:
|
|
scale = (right - left + bottom - top) / 195.0
|
|
|
|
center = np.array( [ (left + right) / 2.0, (top + bottom) / 2.0] )
|
|
centers = [ center ]
|
|
|
|
if multi_sample:
|
|
centers += [ center + [-1,-1],
|
|
center + [1,-1],
|
|
center + [1,1],
|
|
center + [-1,1],
|
|
]
|
|
|
|
images = []
|
|
ptss = []
|
|
|
|
try:
|
|
for c in centers:
|
|
images += [ self.crop(input_image, c, scale) ]
|
|
|
|
images = np.stack (images)
|
|
images = images.astype(np.float32) / 255.0
|
|
|
|
predicted = []
|
|
for i in range( len(images) ):
|
|
predicted += [ self.model.predict ( images[i][None,...] ).transpose (0,3,1,2)[0] ]
|
|
|
|
predicted = np.stack(predicted)
|
|
|
|
for i, pred in enumerate(predicted):
|
|
ptss += [ self.get_pts_from_predict ( pred, centers[i], scale) ]
|
|
pts_img = np.mean ( np.array(ptss), 0 )
|
|
|
|
landmarks.append (pts_img)
|
|
except:
|
|
landmarks.append (None)
|
|
|
|
if second_pass_extractor is not None:
|
|
for i, lmrks in enumerate(landmarks):
|
|
try:
|
|
if lmrks is not None:
|
|
image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL, full_face_align_top=False)
|
|
face_image = cv2.warpAffine(input_image, image_to_face_mat, (256, 256), cv2.INTER_CUBIC )
|
|
|
|
rects2 = second_pass_extractor.extract(face_image, is_bgr=is_bgr)
|
|
if len(rects2) == 1: #dont do second pass if faces != 1 detected in cropped image
|
|
lmrks2 = self.extract (face_image, [ rects2[0] ], is_bgr=is_bgr, multi_sample=True)[0]
|
|
landmarks[i] = LandmarksProcessor.transform_points (lmrks2, image_to_face_mat, True)
|
|
except:
|
|
pass
|
|
|
|
return landmarks
|
|
|
|
def transform(self, point, center, scale, resolution):
|
|
pt = np.array ( [point[0], point[1], 1.0] )
|
|
h = 200.0 * scale
|
|
m = np.eye(3)
|
|
m[0,0] = resolution / h
|
|
m[1,1] = resolution / h
|
|
m[0,2] = resolution * ( -center[0] / h + 0.5 )
|
|
m[1,2] = resolution * ( -center[1] / h + 0.5 )
|
|
m = np.linalg.inv(m)
|
|
return np.matmul (m, pt)[0:2]
|
|
|
|
def crop(self, image, center, scale, resolution=256.0):
|
|
ul = self.transform([1, 1], center, scale, resolution).astype( np.int )
|
|
br = self.transform([resolution, resolution], center, scale, resolution).astype( np.int )
|
|
|
|
if image.ndim > 2:
|
|
newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32)
|
|
newImg = np.zeros(newDim, dtype=np.uint8)
|
|
else:
|
|
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
|
|
newImg = np.zeros(newDim, dtype=np.uint8)
|
|
ht = image.shape[0]
|
|
wd = image.shape[1]
|
|
newX = np.array([max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
|
|
newY = np.array([max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
|
|
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
|
|
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
|
|
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
|
|
|
|
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR)
|
|
return newImg
|
|
|
|
def get_pts_from_predict(self, a, center, scale):
|
|
a_ch, a_h, a_w = a.shape
|
|
|
|
b = a.reshape ( (a_ch, a_h*a_w) )
|
|
c = b.argmax(1).reshape ( (a_ch, 1) ).repeat(2, axis=1).astype(np.float)
|
|
c[:,0] %= a_w
|
|
c[:,1] = np.apply_along_axis ( lambda x: np.floor(x / a_w), 0, c[:,1] )
|
|
|
|
for i in range(a_ch):
|
|
pX, pY = int(c[i,0]), int(c[i,1])
|
|
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
|
|
diff = np.array ( [a[i,pY,pX+1]-a[i,pY,pX-1], a[i,pY+1,pX]-a[i,pY-1,pX]] )
|
|
c[i] += np.sign(diff)*0.25
|
|
|
|
c += 0.5
|
|
|
|
return np.array( [ self.transform (c[i], center, scale, a_w) for i in range(a_ch) ] )
|
|
|
|
@staticmethod
|
|
def BuildModel():
|
|
def ConvBlock(out_planes, input):
|
|
in_planes = K.int_shape(input)[-1]
|
|
x = input
|
|
x = BatchNormalization(momentum=0.1, epsilon=1e-05)(x)
|
|
x = ReLU() (x)
|
|
x = out1 = Conv2D( int(out_planes/2), kernel_size=3, strides=1, padding='valid', use_bias = False) (ZeroPadding2D(1)(x))
|
|
|
|
x = BatchNormalization(momentum=0.1, epsilon=1e-05)(x)
|
|
x = ReLU() (x)
|
|
x = out2 = Conv2D( int(out_planes/4), kernel_size=3, strides=1, padding='valid', use_bias = False) (ZeroPadding2D(1)(x))
|
|
|
|
x = BatchNormalization(momentum=0.1, epsilon=1e-05)(x)
|
|
x = ReLU() (x)
|
|
x = out3 = Conv2D( int(out_planes/4), kernel_size=3, strides=1, padding='valid', use_bias = False) (ZeroPadding2D(1)(x))
|
|
|
|
x = Concatenate()([out1, out2, out3])
|
|
|
|
if in_planes != out_planes:
|
|
downsample = BatchNormalization(momentum=0.1, epsilon=1e-05)(input)
|
|
downsample = ReLU() (downsample)
|
|
downsample = Conv2D( out_planes, kernel_size=1, strides=1, padding='valid', use_bias = False) (downsample)
|
|
x = Add ()([x, downsample])
|
|
else:
|
|
x = Add ()([x, input])
|
|
|
|
|
|
return x
|
|
|
|
def HourGlass (depth, input):
|
|
up1 = ConvBlock(256, input)
|
|
|
|
low1 = AveragePooling2D (pool_size=2, strides=2, padding='valid' )(input)
|
|
low1 = ConvBlock (256, low1)
|
|
|
|
if depth > 1:
|
|
low2 = HourGlass (depth-1, low1)
|
|
else:
|
|
low2 = ConvBlock(256, low1)
|
|
|
|
low3 = ConvBlock(256, low2)
|
|
|
|
up2 = UpSampling2D(size=2) (low3)
|
|
return Add() ( [up1, up2] )
|
|
|
|
FAN_Input = Input ( (256, 256, 3) )
|
|
|
|
x = FAN_Input
|
|
|
|
x = Conv2D (64, kernel_size=7, strides=2, padding='valid')(ZeroPadding2D(3)(x))
|
|
x = BatchNormalization(momentum=0.1, epsilon=1e-05)(x)
|
|
x = ReLU()(x)
|
|
|
|
x = ConvBlock (128, x)
|
|
x = AveragePooling2D (pool_size=2, strides=2, padding='valid') (x)
|
|
x = ConvBlock (128, x)
|
|
x = ConvBlock (256, x)
|
|
|
|
outputs = []
|
|
previous = x
|
|
for i in range(4):
|
|
ll = HourGlass (4, previous)
|
|
ll = ConvBlock (256, ll)
|
|
|
|
ll = Conv2D(256, kernel_size=1, strides=1, padding='valid') (ll)
|
|
ll = BatchNormalization(momentum=0.1, epsilon=1e-05)(ll)
|
|
ll = ReLU() (ll)
|
|
|
|
tmp_out = Conv2D(68, kernel_size=1, strides=1, padding='valid') (ll)
|
|
outputs.append(tmp_out)
|
|
|
|
if i < 4 - 1:
|
|
ll = Conv2D(256, kernel_size=1, strides=1, padding='valid') (ll)
|
|
previous = Add() ( [previous, ll, KL.Conv2D(256, kernel_size=1, strides=1, padding='valid') (tmp_out) ] )
|
|
|
|
return Model(FAN_Input, outputs[-1] )
|