mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
379 lines
21 KiB
Python
379 lines
21 KiB
Python
import traceback
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
import imagelib
|
|
from facelib import FaceType, LandmarksProcessor
|
|
from interact import interact as io
|
|
from utils.cv2_utils import *
|
|
|
|
def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
|
|
|
if cfg.mode == 'original':
|
|
if cfg.export_mask_alpha:
|
|
img_bgr = np.concatenate ( [img_bgr, img_face_mask_a], -1 )
|
|
return img_bgr, img_face_mask_a
|
|
|
|
out_img = img_bgr.copy()
|
|
out_merging_mask = None
|
|
|
|
output_size = predictor_input_shape[0]
|
|
if cfg.super_resolution_mode != 0:
|
|
output_size *= 2
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
|
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
|
|
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
|
|
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, predictor_input_shape[0:2] )
|
|
|
|
predicted = predictor_func (predictor_input_bgr)
|
|
if isinstance(predicted, tuple):
|
|
#converter return bgr,mask
|
|
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
|
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
|
predictor_masked = True
|
|
else:
|
|
#converter return bgr only, using dst mask
|
|
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, predictor_input_shape[0:2] )
|
|
predictor_masked = False
|
|
|
|
if cfg.super_resolution_mode:
|
|
prd_face_bgr = cfg.superres_func(cfg.super_resolution_mode, prd_face_bgr)
|
|
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
|
|
|
|
if predictor_masked:
|
|
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
|
else:
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode == 2: #dst
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
|
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 8:
|
|
|
|
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
|
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
|
|
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
|
|
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:
|
|
|
|
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
|
|
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
|
|
|
|
if cfg.face_type == FaceType.FULL:
|
|
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
|
else:
|
|
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=cfg.face_type)
|
|
|
|
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
|
|
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
|
|
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
|
|
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
|
|
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
|
"""
|
|
if cfg.mask_mode == 8: #FANCHQ-dst
|
|
full_face_fanchq_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanchq_input_size, face_type=FaceType.FULL)
|
|
dst_face_fanchq_bgr = cv2.warpAffine(img_bgr, full_face_fanchq_mat, (cfg.fanchq_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
dst_face_fanchq_mask = cfg.fanchq_extract_func( FaceType.FULL, dst_face_fanchq_bgr )
|
|
|
|
if cfg.face_type == FaceType.FULL:
|
|
FANCHQ_dst_face_mask_a_0 = cv2.resize (dst_face_fanchq_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
|
else:
|
|
face_fanchq_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanchq_input_size, face_type=cfg.face_type)
|
|
|
|
fanchq_rect_corner_pts = np.array ( [ [0,0], [cfg.fanchq_input_size-1,0], [0,cfg.fanchq_input_size-1] ], dtype=np.float32 )
|
|
a = LandmarksProcessor.transform_points (fanchq_rect_corner_pts, face_fanchq_mat, invert=True )
|
|
b = LandmarksProcessor.transform_points (a, full_face_fanchq_mat )
|
|
m = cv2.getAffineTransform(b, fanchq_rect_corner_pts)
|
|
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanchq_mask, m, (cfg.fanchq_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
|
"""
|
|
if cfg.mask_mode == 3: #FAN-prd
|
|
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
|
elif cfg.mask_mode == 4: #FAN-dst
|
|
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 5:
|
|
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 6:
|
|
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 7:
|
|
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
#elif cfg.mask_mode == 8: #FANCHQ-dst
|
|
# prd_face_mask_a_0 = FANCHQ_dst_face_mask_a_0
|
|
|
|
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
|
|
|
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
|
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
|
|
|
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
|
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
|
|
|
if 'raw' in cfg.mode:
|
|
face_corner_pts = np.array ([ [0,0], [output_size-1,0], [output_size-1,output_size-1], [0,output_size-1] ], dtype=np.float32)
|
|
square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
|
|
cv2.fillConvexPoly(square_mask, \
|
|
LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
|
|
(1,1,1) )
|
|
|
|
if cfg.mode == 'raw-rgb':
|
|
out_merging_mask = square_mask
|
|
|
|
if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
|
|
if cfg.mode == 'raw-rgb-mask':
|
|
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
|
out_merging_mask = square_mask
|
|
|
|
elif cfg.mode == 'raw-mask-only':
|
|
out_img = img_face_mask_aaa
|
|
out_merging_mask = img_face_mask_aaa
|
|
elif cfg.mode == 'raw-predicted-only':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
out_merging_mask = square_mask
|
|
|
|
out_img = np.clip (out_img, 0.0, 1.0 )
|
|
else:
|
|
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
|
ar = []
|
|
for i in range(1, 10):
|
|
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
if min(lenx,leny) >= 4:
|
|
ar += [ [ lenx, leny] ]
|
|
|
|
if len(ar) > 0:
|
|
lenx, leny = np.mean ( ar, axis=0 )
|
|
lowest_len = min (lenx, leny)
|
|
|
|
if cfg.erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
|
|
if ero > 0:
|
|
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
|
|
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
|
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
|
|
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
|
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
|
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
|
|
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
|
|
|
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
|
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
|
|
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
|
|
|
if cfg.blur_mask_modifier > 0:
|
|
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
|
|
if blur > 0:
|
|
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
|
|
|
|
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
|
|
|
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1: #rct
|
|
prd_face_bgr = imagelib.reinhard_color_transfer ( (prd_face_bgr*255).astype(np.uint8),
|
|
(dst_face_bgr*255).astype(np.uint8),
|
|
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
|
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
|
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
|
|
if cfg.mode == 'hist-match-bw':
|
|
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
|
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
|
|
|
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
if cfg.masked_hist_match:
|
|
hist_mask_a *= prd_face_mask_a
|
|
|
|
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
|
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
|
|
|
|
if cfg.mode == 'hist-match-bw':
|
|
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
#mask used for cv2.seamlessClone
|
|
img_face_mask_a = img_face_mask_aaa[...,0:1]
|
|
|
|
img_face_seamless_mask_a = None
|
|
for i in range(1,10):
|
|
a = img_face_mask_a > i / 10.0
|
|
if len(np.argwhere(a)) == 0:
|
|
continue
|
|
img_face_seamless_mask_a = img_face_mask_a.copy()
|
|
img_face_seamless_mask_a[a] = 1.0
|
|
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
|
break
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
|
|
out_img = np.clip(out_img, 0.0, 1.0)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
try:
|
|
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
|
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
|
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(dtype=np.float32) / 255.0
|
|
except Exception as e:
|
|
#seamlessClone may fail in some cases
|
|
e_str = traceback.format_exc()
|
|
|
|
if 'MemoryError' in e_str:
|
|
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
|
else:
|
|
print ("Seamless fail: " + e_str)
|
|
|
|
|
|
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
|
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
|
|
|
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1:
|
|
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
|
|
|
|
out_face_bgr = imagelib.reinhard_color_transfer ( (out_face_bgr*255).astype(np.uint8),
|
|
(dst_face_bgr*255).astype(np.uint8),
|
|
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
|
|
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
|
out_face_bgr = np.clip( out_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
|
|
if cfg.mode == 'seamless-hist-match':
|
|
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
|
|
|
cfg_mp = cfg.motion_blur_power / 100.0
|
|
if cfg_mp != 0:
|
|
k_size = int(frame_info.motion_power*cfg_mp)
|
|
if k_size >= 1:
|
|
k_size = np.clip (k_size+1, 2, 50)
|
|
if cfg.super_resolution_mode:
|
|
k_size *= 2
|
|
out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
|
|
|
|
if cfg.blursharpen_amount != 0:
|
|
out_face_bgr = cfg.blursharpen_func ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
|
|
|
|
|
|
if cfg.image_denoise_power != 0:
|
|
n = cfg.image_denoise_power
|
|
while n > 0:
|
|
img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
|
|
if int(n / 100) != 0:
|
|
img_bgr = img_bgr_denoised
|
|
else:
|
|
pass_power = (n % 100) / 100.0
|
|
img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
|
|
n = max(n-10,0)
|
|
|
|
if cfg.bicubic_degrade_power != 0:
|
|
p = 1.0 - cfg.bicubic_degrade_power / 101.0
|
|
img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), cv2.INTER_CUBIC)
|
|
img_bgr = cv2.resize (img_bgr_downscaled, img_size, cv2.INTER_CUBIC)
|
|
|
|
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
|
|
|
if cfg.color_degrade_power != 0:
|
|
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
|
if cfg.color_degrade_power == 100:
|
|
out_img = out_img_reduced
|
|
else:
|
|
alpha = cfg.color_degrade_power / 100.0
|
|
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
|
|
|
out_merging_mask = img_face_mask_aaa
|
|
|
|
return out_img, out_merging_mask[...,0:1]
|
|
|
|
|
|
def ConvertMasked (predictor_func, predictor_input_shape, cfg, frame_info):
|
|
img_bgr_uint8 = cv2_imread(frame_info.filename)
|
|
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
|
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
|
|
|
outs = []
|
|
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
|
out_img, out_img_merging_mask = ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
|
outs += [ (out_img, out_img_merging_mask) ]
|
|
|
|
#Combining multiple face outputs
|
|
final_img = None
|
|
final_mask = None
|
|
for img, merging_mask in outs:
|
|
h,w,c = img.shape
|
|
|
|
if final_img is None:
|
|
final_img = img
|
|
final_mask = merging_mask
|
|
else:
|
|
final_img = final_img*(1-merging_mask) + img*merging_mask
|
|
final_mask = np.clip (final_mask + merging_mask, 0, 1 )
|
|
|
|
if cfg.export_mask_alpha:
|
|
final_img = np.concatenate ( [final_img, final_mask], -1)
|
|
|
|
return (final_img*255).astype(np.uint8) |