mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
215 lines
9.8 KiB
Python
215 lines
9.8 KiB
Python
import multiprocessing
|
|
import operator
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
|
|
from core import mathlib
|
|
from core.interact import interact as io
|
|
from core.leras import nn
|
|
from facelib import FaceType, XSegNet
|
|
from models import ModelBase
|
|
from samplelib import *
|
|
|
|
class XSegModel(ModelBase):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
|
|
|
|
#override
|
|
def on_initialize_options(self):
|
|
ask_override = self.ask_override()
|
|
|
|
if not self.is_first_run() and ask_override:
|
|
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
|
self.set_iter(0)
|
|
|
|
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
|
|
|
if self.is_first_run():
|
|
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
|
|
|
if self.is_first_run() or ask_override:
|
|
self.ask_batch_size(4, range=[2,16])
|
|
|
|
#override
|
|
def on_initialize(self):
|
|
device_config = nn.getCurrentDeviceConfig()
|
|
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC"
|
|
nn.initialize(data_format=self.model_data_format)
|
|
tf = nn.tf
|
|
|
|
device_config = nn.getCurrentDeviceConfig()
|
|
devices = device_config.devices
|
|
|
|
self.resolution = resolution = 256
|
|
|
|
|
|
self.face_type = {'h' : FaceType.HALF,
|
|
'mf' : FaceType.MID_FULL,
|
|
'f' : FaceType.FULL,
|
|
'wf' : FaceType.WHOLE_FACE,
|
|
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
|
|
|
place_model_on_cpu = len(devices) == 0
|
|
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
|
|
|
bgr_shape = nn.get4Dshape(resolution,resolution,3)
|
|
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
|
|
|
# Initializing model classes
|
|
self.model = XSegNet(name='XSeg',
|
|
resolution=resolution,
|
|
load_weights=not self.is_first_run(),
|
|
weights_file_root=self.get_model_root_path(),
|
|
training=True,
|
|
place_model_on_cpu=place_model_on_cpu,
|
|
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
|
|
data_format=nn.data_format)
|
|
|
|
if self.is_training:
|
|
# Adjust batch size for multiple GPU
|
|
gpu_count = max(1, len(devices) )
|
|
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
|
self.set_batch_size( gpu_count*bs_per_gpu)
|
|
|
|
|
|
# Compute losses per GPU
|
|
gpu_pred_list = []
|
|
|
|
gpu_losses = []
|
|
gpu_loss_gvs = []
|
|
|
|
for gpu_id in range(gpu_count):
|
|
|
|
|
|
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
|
with tf.device(f'/CPU:0'):
|
|
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
|
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
|
|
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
|
|
|
|
# process model tensors
|
|
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
|
|
gpu_pred_list.append(gpu_pred_t)
|
|
|
|
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
|
|
|
|
gpu_losses += [gpu_loss]
|
|
|
|
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ]
|
|
|
|
|
|
# Average losses and gradients, and create optimizer update ops
|
|
#with tf.device(f'/CPU:0'): # Temporary fix. Unknown bug with training freeze starts from 2.4.0, but 2.3.1 was ok
|
|
with tf.device (models_opt_device):
|
|
pred = tf.concat(gpu_pred_list, 0)
|
|
loss = tf.concat(gpu_losses, 0)
|
|
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))
|
|
|
|
|
|
# Initializing training and view functions
|
|
def train(input_np, target_np):
|
|
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
|
|
return l
|
|
self.train = train
|
|
|
|
def view(input_np):
|
|
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
|
|
self.view = view
|
|
|
|
# initializing sample generators
|
|
cpu_count = min(multiprocessing.cpu_count(), 8)
|
|
src_dst_generators_count = cpu_count // 2
|
|
src_generators_count = cpu_count // 2
|
|
dst_generators_count = cpu_count // 2
|
|
|
|
|
|
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
|
|
debug=self.is_debug(),
|
|
batch_size=self.get_batch_size(),
|
|
resolution=resolution,
|
|
face_type=self.face_type,
|
|
generators_count=src_dst_generators_count,
|
|
data_format=nn.data_format)
|
|
|
|
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=False),
|
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
],
|
|
generators_count=src_generators_count,
|
|
raise_on_no_data=False )
|
|
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=False),
|
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
],
|
|
generators_count=dst_generators_count,
|
|
raise_on_no_data=False )
|
|
|
|
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return self.model.model_filename_list
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.model.save_weights()
|
|
|
|
#override
|
|
def onTrainOneIter(self):
|
|
image_np, mask_np = self.generate_next_samples()[0]
|
|
loss = self.train (image_np, mask_np)
|
|
return ( ('loss', np.mean(loss) ), )
|
|
|
|
#override
|
|
def onGetPreview(self, samples):
|
|
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
|
|
|
srcdst_samples, src_samples, dst_samples = samples
|
|
image_np, mask_np = srcdst_samples
|
|
|
|
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
|
|
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
|
|
|
|
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
|
|
|
|
result = []
|
|
st = []
|
|
for i in range(n_samples):
|
|
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
|
|
|
|
if len(src_samples) != 0:
|
|
src_np, = src_samples
|
|
|
|
|
|
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ]
|
|
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
|
|
|
|
st = []
|
|
for i in range(n_samples):
|
|
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
|
|
|
|
if len(dst_samples) != 0:
|
|
dst_np, = dst_samples
|
|
|
|
|
|
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
|
|
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
|
|
|
|
st = []
|
|
for i in range(n_samples):
|
|
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ]
|
|
|
|
return result
|
|
|
|
Model = XSegModel |