mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
XSeg: added pretrain option.
This commit is contained in:
parent
83b1412da7
commit
55b947eab5
@ -88,9 +88,9 @@ class XSeg(nn.ModelBase):
|
||||
self.uconv02 = ConvBlock(base_ch*2, base_ch)
|
||||
self.uconv01 = ConvBlock(base_ch, base_ch)
|
||||
self.out_conv = nn.Conv2D (base_ch, out_ch, kernel_size=3, padding='SAME')
|
||||
|
||||
|
||||
|
||||
def forward(self, inp):
|
||||
def forward(self, inp, pretrain=False):
|
||||
x = inp
|
||||
|
||||
x = self.conv01(x)
|
||||
@ -126,29 +126,41 @@ class XSeg(nn.ModelBase):
|
||||
x = nn.reshape_4D (x, 4, 4, self.base_ch*8 )
|
||||
|
||||
x = self.up5(x)
|
||||
if pretrain:
|
||||
x5 = tf.zeros_like(x5)
|
||||
x = self.uconv53(tf.concat([x,x5],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv52(x)
|
||||
x = self.uconv51(x)
|
||||
|
||||
x = self.up4(x)
|
||||
if pretrain:
|
||||
x4 = tf.zeros_like(x4)
|
||||
x = self.uconv43(tf.concat([x,x4],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv42(x)
|
||||
x = self.uconv41(x)
|
||||
|
||||
x = self.up3(x)
|
||||
if pretrain:
|
||||
x3 = tf.zeros_like(x3)
|
||||
x = self.uconv33(tf.concat([x,x3],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv32(x)
|
||||
x = self.uconv31(x)
|
||||
|
||||
x = self.up2(x)
|
||||
if pretrain:
|
||||
x2 = tf.zeros_like(x2)
|
||||
x = self.uconv22(tf.concat([x,x2],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv21(x)
|
||||
|
||||
x = self.up1(x)
|
||||
if pretrain:
|
||||
x1 = tf.zeros_like(x1)
|
||||
x = self.uconv12(tf.concat([x,x1],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv11(x)
|
||||
|
||||
x = self.up0(x)
|
||||
if pretrain:
|
||||
x0 = tf.zeros_like(x0)
|
||||
x = self.uconv02(tf.concat([x,x0],axis=nn.conv2d_ch_axis))
|
||||
x = self.uconv01(x)
|
||||
|
||||
|
@ -81,8 +81,8 @@ class XSegNet(object):
|
||||
def get_resolution(self):
|
||||
return self.resolution
|
||||
|
||||
def flow(self, x):
|
||||
return self.model(x)
|
||||
def flow(self, x, pretrain=False):
|
||||
return self.model(x, pretrain=pretrain)
|
||||
|
||||
def get_weights(self):
|
||||
return self.model_weights
|
||||
|
@ -25,13 +25,20 @@ class XSegModel(ModelBase):
|
||||
self.set_iter(0)
|
||||
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
|
||||
if self.options['pretrain'] and self.get_pretraining_data_path() is None:
|
||||
raise Exception("pretraining_data_path is not defined")
|
||||
|
||||
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
@ -50,7 +57,8 @@ class XSegModel(ModelBase):
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
||||
@ -66,14 +74,19 @@ class XSegModel(ModelBase):
|
||||
place_model_on_cpu=place_model_on_cpu,
|
||||
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
|
||||
data_format=nn.data_format)
|
||||
|
||||
|
||||
self.pretrain = self.options['pretrain']
|
||||
if self.pretrain_just_disabled:
|
||||
self.set_iter(0)
|
||||
|
||||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
|
||||
targetm_t = tf.placeholder (nn.floatx, mask_shape)
|
||||
|
||||
# Compute losses per GPU
|
||||
gpu_pred_list = []
|
||||
|
||||
@ -81,20 +94,33 @@ class XSegModel(ModelBase):
|
||||
gpu_loss_gvs = []
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
|
||||
|
||||
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
|
||||
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
|
||||
gpu_targetm_t = targetm_t [batch_slice,:,:,:]
|
||||
|
||||
# process model tensors
|
||||
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
|
||||
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
|
||||
gpu_pred_list.append(gpu_pred_t)
|
||||
|
||||
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
|
||||
|
||||
|
||||
if self.pretrain:
|
||||
gpu_targetm_blur = nn.gaussian_blur(gpu_targetm_t, max(1, resolution // 32) )
|
||||
gpu_targetm_blur = tf.clip_by_value(gpu_targetm_blur, 0, 0.5) * 2
|
||||
|
||||
gpu_target_t_blur = gpu_target_t*gpu_targetm_blur
|
||||
gpu_pred_t_blur = gpu_pred_t*gpu_targetm_t
|
||||
|
||||
# Structural loss
|
||||
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t_blur, gpu_pred_t_blur, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t_blur, gpu_pred_t_blur, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
# Pixel loss
|
||||
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t_blur-gpu_pred_t_blur), axis=[1,2,3])
|
||||
else:
|
||||
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
|
||||
|
||||
gpu_losses += [gpu_loss]
|
||||
|
||||
@ -110,9 +136,14 @@ class XSegModel(ModelBase):
|
||||
|
||||
|
||||
# Initializing training and view functions
|
||||
def train(input_np, target_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
|
||||
return l
|
||||
if self.pretrain:
|
||||
def train(input_np, target_np, targetm_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np, targetm_t :targetm_np })
|
||||
return l
|
||||
else:
|
||||
def train(input_np, target_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
|
||||
return l
|
||||
self.train = train
|
||||
|
||||
def view(input_np):
|
||||
@ -124,30 +155,40 @@ class XSegModel(ModelBase):
|
||||
src_dst_generators_count = cpu_count // 2
|
||||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
|
||||
if self.pretrain:
|
||||
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=False,
|
||||
generators_count=cpu_count )
|
||||
self.set_training_data_generators ([pretrain_gen])
|
||||
else:
|
||||
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
|
||||
debug=self.is_debug(),
|
||||
batch_size=self.get_batch_size(),
|
||||
resolution=resolution,
|
||||
face_type=self.face_type,
|
||||
generators_count=src_dst_generators_count,
|
||||
data_format=nn.data_format)
|
||||
|
||||
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=False),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=src_generators_count,
|
||||
raise_on_no_data=False )
|
||||
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=False),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=dst_generators_count,
|
||||
raise_on_no_data=False )
|
||||
|
||||
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
|
||||
debug=self.is_debug(),
|
||||
batch_size=self.get_batch_size(),
|
||||
resolution=resolution,
|
||||
face_type=self.face_type,
|
||||
generators_count=src_dst_generators_count,
|
||||
data_format=nn.data_format)
|
||||
|
||||
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=False),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=src_generators_count,
|
||||
raise_on_no_data=False )
|
||||
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=False),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=dst_generators_count,
|
||||
raise_on_no_data=False )
|
||||
|
||||
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
|
||||
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
|
||||
|
||||
#override
|
||||
def get_model_filename_list(self):
|
||||
@ -159,16 +200,25 @@ class XSegModel(ModelBase):
|
||||
|
||||
#override
|
||||
def onTrainOneIter(self):
|
||||
image_np, mask_np = self.generate_next_samples()[0]
|
||||
loss = self.train (image_np, mask_np)
|
||||
if self.pretrain:
|
||||
image_np, target_np, targetm_np = self.generate_next_samples()[0]
|
||||
loss = self.train (image_np, target_np, targetm_np)
|
||||
else:
|
||||
image_np, mask_np = self.generate_next_samples()[0]
|
||||
loss = self.train (image_np, mask_np)
|
||||
|
||||
return ( ('loss', np.mean(loss) ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||
|
||||
srcdst_samples, src_samples, dst_samples = samples
|
||||
image_np, mask_np = srcdst_samples
|
||||
|
||||
if self.pretrain:
|
||||
srcdst_samples, = samples
|
||||
image_np, mask_np, _ = srcdst_samples
|
||||
else:
|
||||
srcdst_samples, src_samples, dst_samples = samples
|
||||
image_np, mask_np = srcdst_samples
|
||||
|
||||
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
|
||||
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
|
||||
@ -178,11 +228,14 @@ class XSegModel(ModelBase):
|
||||
result = []
|
||||
st = []
|
||||
for i in range(n_samples):
|
||||
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
|
||||
if self.pretrain:
|
||||
ar = I[i], IM[i]
|
||||
else:
|
||||
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
|
||||
st.append ( np.concatenate ( ar, axis=1) )
|
||||
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
if len(src_samples) != 0:
|
||||
if not self.pretrain and len(src_samples) != 0:
|
||||
src_np, = src_samples
|
||||
|
||||
|
||||
@ -196,7 +249,7 @@ class XSegModel(ModelBase):
|
||||
|
||||
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
if len(dst_samples) != 0:
|
||||
if not self.pretrain and len(dst_samples) != 0:
|
||||
dst_np, = dst_samples
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user