proxmark3/armsrc/iclass.c
pwpiwi 7a53739728 fixing some fpga and iclass issues
* make fpga_version_info.c phony and delete it on 'make clean'
* wait for transfer to complete before returning from FpgaSendCommand()
* log correct tag times in iclass simulation
* shorten pulse from TC1 to TC0 in StartCountSspClk()
* shorten ssp_frame pulse in fpga/hi_reader.v
* some reformatting and whitespace fixes
2020-03-31 08:39:16 +02:00

929 lines
31 KiB
C

//-----------------------------------------------------------------------------
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
// Gerhard de Koning Gans - May 2011
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
// piwi - 2019
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
// Contribution made during a security research at Radboud University Nijmegen
//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
#include "iclass.h"
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "printf.h"
#include "common.h"
#include "usb_cdc.h"
#include "iso14443a.h"
#include "iso15693.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
#include "iso15693tools.h"
#include "protocols.h"
#include "optimized_cipher.h"
#include "fpgaloader.h"
// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
// 56,64us = 24 ssp_clk_cycles
#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
// times in samples @ 212kHz when acting as reader
#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
#define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms
#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
#define ICLASS_BUFFER_SIZE 34 // we expect max 34 bytes as tag answer (response to READ4)
//=============================================================================
// A `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
void SnoopIClass(uint8_t jam_search_len, uint8_t *jam_search_string) {
SnoopIso15693(jam_search_len, jam_search_string);
}
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
int i;
for (i = 0; i < 8; i++) {
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
}
}
// Encode SOF only
static void CodeIClassTagSOF() {
ToSendReset();
ToSend[++ToSendMax] = 0x1D;
ToSendMax++;
}
static void AppendCrc(uint8_t *data, int len) {
ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
}
/**
* @brief Does the actual simulation
*/
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
uint16_t page_size = 32 * 8;
uint8_t current_page = 0;
// maintain cipher states for both credit and debit key for each page
State cipher_state_KC[8];
State cipher_state_KD[8];
State *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10];
uint8_t csn_data[10];
memcpy(csn_data, csn, sizeof(csn_data));
Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
// Construct anticollision-CSN
rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
AppendCrc(anticoll_data, 8);
AppendCrc(csn_data, 8);
uint8_t diversified_key_d[8] = { 0x00 };
uint8_t diversified_key_c[8] = { 0x00 };
uint8_t *diversified_key = diversified_key_d;
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
if (simulationMode == ICLASS_SIM_MODE_FULL) {
// initialize from page 0
memcpy(conf_block, emulator + 8 * 1, 8);
memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse
memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd
memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
AppendCrc(conf_block, 8);
// save card challenge for sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
if (conf_block[5] & 0x80) {
page_size = 256 * 8;
}
// From PicoPass DS:
// When the page is in personalization mode this bit is equal to 1.
// Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
// the page is then "in application mode".
bool personalization_mode = conf_block[7] & 0x80;
// chip memory may be divided in 8 pages
uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
// Precalculate the cipher states, feeding it the CC
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
for (int i = 1; i < max_page; i++) {
uint8_t *epurse = emulator + i*page_size + 8*2;
uint8_t *Kd = emulator + i*page_size + 8*3;
uint8_t *Kc = emulator + i*page_size + 8*4;
cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd);
cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
}
}
int exitLoop = 0;
// Reader 0a
// Tag 0f
// Reader 0c
// Tag anticoll. CSN
// Reader 81 anticoll. CSN
// Tag CSN
uint8_t *modulated_response;
int modulated_response_size = 0;
uint8_t *trace_data = NULL;
int trace_data_size = 0;
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(1);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_anticoll = BigBuf_malloc(22);
int resp_anticoll_len;
// CSN (block 0)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_csn = BigBuf_malloc(22);
int resp_csn_len;
// configuration (block 1) picopass 2ks
uint8_t *resp_conf = BigBuf_malloc(22);
int resp_conf_len;
// e-Purse (block 2)
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
uint8_t *resp_cc = BigBuf_malloc(18);
int resp_cc_len;
// Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
uint8_t *resp_ff = BigBuf_malloc(22);
int resp_ff_len;
uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
AppendCrc(ff_data, 8);
// Application Issuer Area (block 5)
uint8_t *resp_aia = BigBuf_malloc(22);
int resp_aia_len;
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
AppendCrc(aia_data, 8);
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len;
// Prepare card messages
// First card answer: SOF only
CodeIClassTagSOF();
memcpy(resp_sof, ToSend, ToSendMax);
resp_sof_Len = ToSendMax;
// Anticollision CSN
CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ToSend, ToSendMax);
resp_anticoll_len = ToSendMax;
// CSN (block 0)
CodeIso15693AsTag(csn_data, sizeof(csn_data));
memcpy(resp_csn, ToSend, ToSendMax);
resp_csn_len = ToSendMax;
// Configuration (block 1)
CodeIso15693AsTag(conf_block, sizeof(conf_block));
memcpy(resp_conf, ToSend, ToSendMax);
resp_conf_len = ToSendMax;
// e-Purse (block 2)
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax);
resp_cc_len = ToSendMax;
// Kd, Kc (blocks 3 and 4)
CodeIso15693AsTag(ff_data, sizeof(ff_data));
memcpy(resp_ff, ToSend, ToSendMax);
resp_ff_len = ToSendMax;
// Application Issuer Area (block 5)
CodeIso15693AsTag(aia_data, sizeof(aia_data));
memcpy(resp_aia, ToSend, ToSendMax);
resp_aia_len = ToSendMax;
//This is used for responding to READ-block commands or other data which is dynamically generated
uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2);
bool buttonPressed = false;
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
while (!exitLoop) {
WDT_HIT();
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
if (len < 0) {
buttonPressed = true;
break;
}
// Now look at the reader command and provide appropriate responses
// default is no response:
modulated_response = NULL;
modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) {
// Reader in anticollision phase
if (chip_state != HALTED) {
modulated_response = resp_sof;
modulated_response_size = resp_sof_Len;
chip_state = ACTIVATED;
}
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify
// Reader asks for anticollision CSN
if (chip_state == SELECTED || chip_state == ACTIVATED) {
modulated_response = resp_anticoll;
modulated_response_size = resp_anticoll_len;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
}
} else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) {
// Reader selects anticollision CSN.
// Tag sends the corresponding real CSN
if (chip_state == ACTIVATED || chip_state == SELECTED) {
if (!memcmp(receivedCmd+1, anticoll_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
} else {
chip_state = IDLE;
}
} else if (chip_state == HALTED) {
// RESELECT with CSN
if (!memcmp(receivedCmd+1, csn_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
}
}
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block
uint16_t blockNo = receivedCmd[1];
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
// provide defaults for blocks 0 ... 5
switch (blockNo) {
case 0: // csn (block 00)
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
break;
case 1: // configuration (block 01)
modulated_response = resp_conf;
modulated_response_size = resp_conf_len;
trace_data = conf_block;
trace_data_size = sizeof(conf_block);
break;
case 2: // e-purse (block 02)
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
// set epurse of sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
break;
case 3:
case 4: // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff;
modulated_response_size = resp_ff_len;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
break;
case 5: // Application Issuer Area (block 05)
modulated_response = resp_aia;
modulated_response_size = resp_aia_len;
trace_data = aia_data;
trace_data_size = sizeof(aia_data);
break;
// default: don't respond
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) {
if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff;
modulated_response_size = resp_ff_len;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
} else { // use data from emulator memory
memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
}
}
} else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD
|| receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) {
// Read e-purse (88 02 || 18 02)
if (chip_state == SELECTED) {
if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_key_d;
} else {
cipher_state = &cipher_state_KC[current_page];
diversified_key = diversified_key_c;
}
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
}
} else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL) {
//NR, from reader, is in receivedCmd+1
opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
//exitLoop = true;
} else { // Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
if (reader_mac_buf != NULL) {
// save NR and MAC for sim 2,4
memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
}
exitLoop = true;
}
}
}
} else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
if (chip_state == SELECTED) {
// Reader ends the session
modulated_response = resp_sof;
modulated_response_size = resp_sof_Len;
chip_state = HALTED;
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
//Read 4 blocks
if (chip_state == SELECTED) {
uint8_t blockNo = receivedCmd[1];
memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4);
AppendCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace;
trace_data_size = 8 * 4 + 2;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
} else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
// We're expected to respond with the data+crc, exactly what's already in the receivedCmd
// receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
if (chip_state == SELECTED) {
uint8_t blockNo = receivedCmd[1];
if (blockNo == 2) { // update e-purse
memcpy(card_challenge_data, receivedCmd+2, 8);
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax);
resp_cc_len = ToSendMax;
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8);
}
} else if (blockNo == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_key_d[i] = receivedCmd[2 + i];
} else {
diversified_key_d[i] ^= receivedCmd[2 + i];
}
}
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
}
} else if (blockNo == 4) { // update Kc
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_key_c[i] = receivedCmd[2 + i];
} else {
diversified_key_c[i] ^= receivedCmd[2 + i];
}
}
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8);
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
}
memcpy(data_generic_trace, receivedCmd + 2, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel
// Chips with a single page will not answer to this command
// Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
current_page = receivedCmd[1];
memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
cipher_state = &cipher_state_KD[current_page];
personalization_mode = data_generic_trace[7] & 0x80;
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
}
} else if (receivedCmd[0] == 0x26 && len == 5) {
// standard ISO15693 INVENTORY command. Ignore.
} else {
// don't know how to handle this command
char debug_message[250]; // should be enough
sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len);
for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) {
sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]);
}
Dbprintf("%s", debug_message);
// Do not respond
}
/**
A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size*32*64, NULL, false);
}
}
if (buttonPressed)
{
DbpString("Button pressed");
}
return buttonPressed;
}
/**
* @brief SimulateIClass simulates an iClass card.
* @param arg0 type of simulation
* - 0 uses the first 8 bytes in usb data as CSN
* - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
* in the usb data. This mode collects MAC from the reader, in order to do an offline
* attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
* - Other : Uses the default CSN (031fec8af7ff12e0)
* @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
* @param arg2
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
LED_A_ON();
Iso15693InitTag();
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
// Enable and clear the trace
set_tracing(true);
clear_trace();
//Use the emulator memory for SIM
uint8_t *emulator = BigBuf_get_EM_addr();
if (simType == ICLASS_SIM_MODE_CSN) {
// Use the CSN from commandline
memcpy(emulator, datain, 8);
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) {
//Default CSN
uint8_t csn[] = {0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0};
memcpy(emulator, csn, 8);
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offline-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
int i;
for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) {
// The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
memcpy(emulator, datain+(i*8), 8);
if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) {
// Button pressed
break;
}
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3],
datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]);
Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11],
mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]);
SpinDelay(100); // give the reader some time to prepare for next CSN
}
cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16);
} else if (simType == ICLASS_SIM_MODE_FULL) {
//This is 'full sim' mode, where we use the emulator storage for data.
doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL);
} else {
// We may want a mode here where we hardcode the csns to use (from proxclone).
// That will speed things up a little, but not required just yet.
Dbprintf("The mode is not implemented, reserved for future use");
}
Dbprintf("Done...");
LED_A_OFF();
}
/// THE READER CODE
static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
CodeIso15693AsReader(frame, len);
TransmitTo15693Tag(ToSend, ToSendMax, start_time);
uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
uint8_t expected_size, uint8_t tries, uint32_t start_time, uint32_t timeout, uint32_t *eof_time) {
while (tries-- > 0) {
ReaderTransmitIClass(command, cmdsize, &start_time);
if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) {
return true;
}
}
return false;//Error
}
/**
* @brief Selects an iclass tag
* @param card_data where the CSN is stored for return
* @return false = fail
* true = success
*/
static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
uint8_t act_all[] = { 0x0a };
uint8_t identify[] = { 0x0c };
uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
uint32_t start_time = GetCountSspClk();
// Send act_all
ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail
//Send Identify
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false; //Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
//Select the card
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false; //Fail
//Success - we got CSN
//Save CSN in response data
memcpy(card_data, resp, 8);
return true;
}
// Select an iClass tag and read all blocks which are always readable without authentication
void ReaderIClass(uint8_t flags) {
LED_A_ON();
uint8_t card_data[6 * 8] = {0};
memset(card_data, 0xFF, sizeof(card_data));
uint8_t resp[ICLASS_BUFFER_SIZE];
//Read conf block CRC(0x01) => 0xfa 0x22
uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
//Read e-purse block CRC(0x02) => 0x61 0x10
uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
uint8_t result_status = 0;
if (flags & FLAG_ICLASS_READER_INIT) {
Iso15693InitReader();
}
if (flags & FLAG_ICLASS_READER_CLEARTRACE) {
set_tracing(true);
clear_trace();
StartCountSspClk();
}
uint32_t start_time = 0;
uint32_t eof_time = 0;
if (selectIclassTag(resp, &eof_time)) {
result_status = FLAG_ICLASS_READER_CSN;
memcpy(card_data, resp, 8);
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
//Read block 1, config
if (flags & FLAG_ICLASS_READER_CONF) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to read config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 2, e-purse
if (flags & FLAG_ICLASS_READER_CC) {
if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CC;
memcpy(card_data + (8*2), resp, 8);
} else {
Dbprintf("Failed to read e-purse");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flags & FLAG_ICLASS_READER_AA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
Dbprintf("Failed to read AA block");
}
}
}
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
LED_A_OFF();
}
void iClass_Check(uint8_t *NRMAC) {
uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00};
uint8_t resp[4];
memcpy(check+1, NRMAC, 8);
uint32_t eof_time;
bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
}
void iClass_Readcheck(uint8_t block, bool use_credit_key) {
uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block};
if (use_credit_key) {
readcheck[0] = ICLASS_CMD_READCHECK_KC;
}
uint8_t resp[8];
uint32_t eof_time;
bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
}
static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
uint8_t bl = blockNo;
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
uint8_t resp[10];
uint32_t eof_time;
bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
memcpy(readdata, resp, sizeof(resp));
return isOK;
}
void iClass_ReadBlk(uint8_t blockno) {
LED_A_ON();
uint8_t readblockdata[10];
bool isOK = iClass_ReadBlock(blockno, readblockdata);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
LED_A_OFF();
}
void iClass_Dump(uint8_t startblock, uint8_t numblks) {
LED_A_ON();
uint8_t readblockdata[USB_CMD_DATA_SIZE+2] = {0};
bool isOK = false;
uint16_t blkCnt = 0;
if (numblks > USB_CMD_DATA_SIZE / 8) {
numblks = USB_CMD_DATA_SIZE / 8;
}
for (blkCnt = 0; blkCnt < numblks; blkCnt++) {
isOK = iClass_ReadBlock(startblock+blkCnt, readblockdata+8*blkCnt);
if (!isOK) {
Dbprintf("Block %02X failed to read", startblock+blkCnt);
break;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, blkCnt, 0, readblockdata, blkCnt*8);
LED_A_OFF();
}
static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
uint8_t write[16] = {ICLASS_CMD_UPDATE, blockNo};
memcpy(write+2, data, 12); // data + mac
AppendCrc(write+1, 13);
uint8_t resp[10];
bool isOK = false;
uint32_t eof_time = 0;
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 3, 0, ICLASS_READER_TIMEOUT_UPDATE, &eof_time);
if (!isOK) {
return false;
}
uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (blockNo == 2) {
if (memcmp(data+4, resp, 4) || memcmp(data, resp+4, 4)) { // check response. e-purse update swaps first and second half
return false;
}
} else if (blockNo == 3 || blockNo == 4) {
if (memcmp(all_ff, resp, 8)) { // check response. Key updates always return 0xffffffffffffffff
return false;
}
} else {
if (memcmp(data, resp, 8)) { // check response. All other updates return unchanged data
return false;
}
}
return true;
}
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
LED_A_ON();
bool isOK = iClass_WriteBlock_ext(blockNo, data);
if (isOK) {
Dbprintf("Write block [%02x] successful", blockNo);
} else {
Dbprintf("Write block [%02x] failed", blockNo);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
LED_A_OFF();
}
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
LED_A_ON();
int written = 0;
int total_blocks = (endblock - startblock) + 1;
for (uint8_t block = startblock; block <= endblock; block++) {
// block number
if (iClass_WriteBlock_ext(block, data + (block-startblock)*12)) {
Dbprintf("Write block [%02x] successful", block);
written++;
} else {
Dbprintf("Write block [%02x] failed", block);
}
}
if (written == total_blocks)
Dbprintf("Clone complete");
else
Dbprintf("Clone incomplete");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
LED_A_OFF();
}