/*
 * Copyright (c)2013-2021 ZeroTier, Inc.
 *
 * Use of this software is governed by the Business Source License included
 * in the LICENSE.TXT file in the project's root directory.
 *
 * Change Date: 2026-01-01
 *
 * On the date above, in accordance with the Business Source License, use
 * of this software will be governed by version 2.0 of the Apache License.
 */
/****/

#include "Bond.hpp"

#include "Switch.hpp"

#include <cinttypes>   // for PRId64, etc. macros
#include <cmath>
#include <cstdio>
#include <string>

// FIXME: remove this suppression and actually fix warnings
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wsign-compare"
#endif

namespace ZeroTier {

static unsigned char s_freeRandomByteCounter = 0;

int Bond::_minReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;
uint8_t Bond::_defaultPolicy = ZT_BOND_POLICY_NONE;

Phy<Bond*>* Bond::_phy;

Binder* Bond::_binder;

Mutex Bond::_bonds_m;
Mutex Bond::_links_m;

std::string Bond::_defaultPolicyStr;
std::map<int64_t, SharedPtr<Bond> > Bond::_bonds;
std::map<int64_t, std::string> Bond::_policyTemplateAssignments;
std::map<std::string, SharedPtr<Bond> > Bond::_bondPolicyTemplates;
std::map<std::string, std::vector<SharedPtr<Link> > > Bond::_linkDefinitions;
std::map<std::string, std::map<std::string, SharedPtr<Link> > > Bond::_interfaceToLinkMap;

bool Bond::linkAllowed(std::string& policyAlias, SharedPtr<Link> link)
{
    if (! link) {
        return false;
    }
    bool foundInDefinitions = false;
    if (_linkDefinitions.count(policyAlias)) {
        auto it = _linkDefinitions[policyAlias].begin();
        while (it != _linkDefinitions[policyAlias].end()) {
            if (link->ifname() == (*it)->ifname()) {
                foundInDefinitions = true;
                break;
            }
            ++it;
        }
    }
    return _linkDefinitions[policyAlias].empty() || foundInDefinitions;
}

void Bond::addCustomLink(std::string& policyAlias, SharedPtr<Link> link)
{
    Mutex::Lock _l(_links_m);
    _linkDefinitions[policyAlias].push_back(link);
    auto search = _interfaceToLinkMap[policyAlias].find(link->ifname());
    if (search == _interfaceToLinkMap[policyAlias].end()) {
        link->setAsUserSpecified(true);
        _interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(link->ifname(), link));
    }
}

bool Bond::addCustomPolicy(const SharedPtr<Bond>& newBond)
{
    Mutex::Lock _l(_bonds_m);
    if (! _bondPolicyTemplates.count(newBond->policyAlias())) {
        _bondPolicyTemplates[newBond->policyAlias()] = newBond;
        return true;
    }
    return false;
}

bool Bond::assignBondingPolicyToPeer(int64_t identity, const std::string& policyAlias)
{
    Mutex::Lock _l(_bonds_m);
    if (! _policyTemplateAssignments.count(identity)) {
        _policyTemplateAssignments[identity] = policyAlias;
        return true;
    }
    return false;
}

SharedPtr<Bond> Bond::getBondByPeerId(int64_t identity)
{
    Mutex::Lock _l(_bonds_m);
    return _bonds.count(identity) ? _bonds[identity] : SharedPtr<Bond>();
}

bool Bond::setAllMtuByTuple(uint16_t mtu, const std::string& ifStr, const std::string& ipStr)
{
    Mutex::Lock _l(_bonds_m);
    std::map<int64_t, SharedPtr<Bond> >::iterator bondItr = _bonds.begin();
    bool found = false;
    while (bondItr != _bonds.end()) {
        if (bondItr->second->setMtuByTuple(mtu, ifStr, ipStr)) {
            found = true;
        }
        ++bondItr;
    }
    return found;
}

bool Bond::setMtuByTuple(uint16_t mtu, const std::string& ifStr, const std::string& ipStr)
{
    Mutex::Lock _lp(_paths_m);
    bool found = false;
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p) {
            SharedPtr<Link> sl = getLink(_paths[i].p);
            if (sl) {
                if (sl->ifname() == ifStr) {
                    char ipBuf[64] = { 0 };
                    _paths[i].p->address().toIpString(ipBuf);
                    std::string newString = std::string(ipBuf);
                    if (newString == ipStr) {
                        _paths[i].p->_mtu = mtu;
                        found = true;
                    }
                }
            }
        }
    }
    return found;
}

SharedPtr<Bond> Bond::createBond(const RuntimeEnvironment* renv, const SharedPtr<Peer>& peer)
{
    Mutex::Lock _l(_bonds_m);
    int64_t identity = peer->identity().address().toInt();
    Bond* bond = nullptr;
    if (! _bonds.count(identity)) {
        if (! _policyTemplateAssignments.count(identity)) {
            if (_defaultPolicy) {
                bond = new Bond(renv, _defaultPolicy, peer);
                bond->debug("new default bond");
            }
            if (! _defaultPolicy && _defaultPolicyStr.length()) {
                bond = new Bond(renv, _bondPolicyTemplates[_defaultPolicyStr].ptr(), peer);
                bond->debug("new default custom bond (based on %s)", bond->getPolicyStrByCode(bond->policy()).c_str());
            }
        }
        else {
            if (! _bondPolicyTemplates[_policyTemplateAssignments[identity]]) {
                bond = new Bond(renv, _defaultPolicy, peer);
                bond->debug("peer-specific bond, was specified as %s but the bond definition was not found, using default %s", _policyTemplateAssignments[identity].c_str(), getPolicyStrByCode(_defaultPolicy).c_str());
            }
            else {
                bond = new Bond(renv, _bondPolicyTemplates[_policyTemplateAssignments[identity]].ptr(), peer);
                bond->debug("new default bond");
            }
        }
    }
    if (bond) {
        _bonds[identity] = bond;
        /**
         * Determine if user has specified anything that could affect the bonding policy's decisions
         */
        if (_interfaceToLinkMap.count(bond->policyAlias())) {
            std::map<std::string, SharedPtr<Link> >::iterator it = _interfaceToLinkMap[bond->policyAlias()].begin();
            while (it != _interfaceToLinkMap[bond->policyAlias()].end()) {
                if (it->second->isUserSpecified()) {
                    bond->_userHasSpecifiedLinks = true;
                }
                if (it->second->isUserSpecified() && it->second->primary()) {
                    bond->_userHasSpecifiedPrimaryLink = true;
                }
                if (it->second->isUserSpecified() && it->second->userHasSpecifiedFailoverInstructions()) {
                    bond->_userHasSpecifiedFailoverInstructions = true;
                }
                if (it->second->isUserSpecified() && (it->second->capacity() > 0)) {
                    bond->_userHasSpecifiedLinkCapacities = true;
                }
                ++it;
            }
        }
        bond->startBond();
        return bond;
    }
    return SharedPtr<Bond>();
}

void Bond::destroyBond(uint64_t peerId)
{
    Mutex::Lock _l(_bonds_m);
    auto iter = _bonds.find(peerId);
    if (iter != _bonds.end()) {
        iter->second->stopBond();
        _bonds.erase(iter);
    }
}

void Bond::stopBond()
{
    debug("stopping bond");
    _run = false;
}

void Bond::startBond()
{
    debug("starting bond");
    _run = true;
}

SharedPtr<Link> Bond::getLinkBySocket(const std::string& policyAlias, uint64_t localSocket, bool createIfNeeded = false)
{
    Mutex::Lock _l(_links_m);
    char ifname[ZT_MAX_PHYSIFNAME] = {};
    _binder->getIfName((PhySocket*)((uintptr_t)localSocket), ifname, sizeof(ifname) - 1);
    std::string ifnameStr(ifname);
    auto search = _interfaceToLinkMap[policyAlias].find(ifnameStr);
    if (search == _interfaceToLinkMap[policyAlias].end()) {
        if (createIfNeeded) {
            SharedPtr<Link> s = new Link(ifnameStr, 0, 0, 0, true, ZT_BOND_SLAVE_MODE_PRIMARY, "");
            _interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(ifnameStr, s));
            return s;
        }
        else {
            return SharedPtr<Link>();
        }
    }
    else {
        return search->second;
    }
}

SharedPtr<Link> Bond::getLinkByName(const std::string& policyAlias, const std::string& ifname)
{
    Mutex::Lock _l(_links_m);
    auto search = _interfaceToLinkMap[policyAlias].find(ifname);
    if (search != _interfaceToLinkMap[policyAlias].end()) {
        return search->second;
    }
    return SharedPtr<Link>();
}

void Bond::processBackgroundTasks(void* tPtr, const int64_t now)
{
    unsigned long _currMinReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;
    Mutex::Lock _l(_bonds_m);
    std::map<int64_t, SharedPtr<Bond> >::iterator bondItr = _bonds.begin();
    while (bondItr != _bonds.end()) {
        // Update Bond Controller's background processing timer
        _currMinReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)(bondItr->second->monitorInterval()));
        bondItr->second->processBackgroundBondTasks(tPtr, now);
        ++bondItr;
    }
    _minReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)ZT_BOND_FAILOVER_DEFAULT_INTERVAL);
}

Bond::Bond(const RuntimeEnvironment* renv) : RR(renv)
{
    initTimers();
}

Bond::Bond(const RuntimeEnvironment* renv, int policy, const SharedPtr<Peer>& peer) : RR(renv), _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter), _peer(peer), _peerId(_peer->_id.address().toInt())
{
    initTimers();
    setBondParameters(policy, SharedPtr<Bond>(), false);
    _policyAlias = getPolicyStrByCode(policy);
}

Bond::Bond(const RuntimeEnvironment* renv, std::string& basePolicy, std::string& policyAlias, const SharedPtr<Peer>& peer) : RR(renv), _policyAlias(policyAlias), _peer(peer)
{
    initTimers();
    setBondParameters(getPolicyCodeByStr(basePolicy), SharedPtr<Bond>(), false);
}

Bond::Bond(const RuntimeEnvironment* renv, SharedPtr<Bond> originalBond, const SharedPtr<Peer>& peer)
    : RR(renv)
    , _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter)
    , _peer(peer)
    , _peerId(_peer->_id.address().toInt())
{
    initTimers();
    setBondParameters(originalBond->_policy, originalBond, true);
}

void Bond::nominatePathToBond(const SharedPtr<Path>& path, int64_t now)
{
    Mutex::Lock _l(_paths_m);
    debug("attempting to nominate link %s", pathToStr(path).c_str());
    /**
     * Ensure the link is allowed and the path is not already present
     */
    if (! RR->bc->linkAllowed(_policyAlias, getLinkBySocket(_policyAlias, path->localSocket(), true))) {
        debug("link %s is not allowed according to user-specified rules", pathToStr(path).c_str());
        return;
    }
    bool alreadyPresent = false;
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        // Sanity check
        if (path.ptr() == _paths[i].p.ptr()) {
            alreadyPresent = true;
            debug("link %s already exists", pathToStr(path).c_str());
            break;
        }
    }
    if (! alreadyPresent) {
        SharedPtr<Link> link = getLink(path);
        if (link) {
            std::string ifnameStr = std::string(link->ifname());
            memset(path->_ifname, 0x0, ZT_MAX_PHYSIFNAME);
            memcpy(path->_ifname, ifnameStr.c_str(), std::min((int)ifnameStr.length(), ZT_MAX_PHYSIFNAME));
        }
        /**
         * Find somewhere to stick it
         */
        for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (! _paths[i].p) {
                _paths[i].set(now, path);
                /**
                 * Set user preferences and update state variables of other paths on the same link
                 */
                SharedPtr<Link> sl = getLink(_paths[i].p);
                if (sl) {
                    // Determine if there are any other paths on this link
                    bool bFoundCommonLink = false;
                    SharedPtr<Link> commonLink = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
                    if (commonLink) {
                        for (unsigned int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; ++j) {
                            if (_paths[j].p && _paths[j].p.ptr() != _paths[i].p.ptr()) {
                                if (RR->bc->getLinkBySocket(_policyAlias, _paths[j].p->localSocket(), true) == commonLink) {
                                    bFoundCommonLink = true;
                                    _paths[j].onlyPathOnLink = false;
                                }
                            }
                        }
                        _paths[i].ipvPref = sl->ipvPref();
                        _paths[i].mode = sl->mode();
                        _paths[i].enabled = sl->enabled();
                        _paths[i].localPort = _phy->getLocalPort((PhySocket*)((uintptr_t)path->localSocket()));
                        _paths[i].onlyPathOnLink = ! bFoundCommonLink;
                    }
                }
                log("nominated link %s", pathToStr(path).c_str());
                break;
            }
        }
    }
    curateBond(now, true);
    estimatePathQuality(now);
}

void Bond::addPathToBond(int nominatedIdx, int bondedIdx)
{
    // Map bonded set to nominated set
    _realIdxMap[bondedIdx] = nominatedIdx;
    // Tell the bonding layer that we can now use this path for traffic
    _paths[nominatedIdx].bonded = true;
}

SharedPtr<Path> Bond::getAppropriatePath(int64_t now, int32_t flowId)
{
    Mutex::Lock _l(_paths_m);
    /**
     * active-backup
     */
    if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
        if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && _paths[_abPathIdx].p) {
            // fprintf(stderr, "trying to send via (_abPathIdx=%d) %s\n", _abPathIdx, pathToStr(_paths[_abPathIdx].p).c_str());
            return _paths[_abPathIdx].p;
        }
    }
    /**
     * broadcast
     */
    if (_policy == ZT_BOND_POLICY_BROADCAST) {
        return SharedPtr<Path>();   // Handled in Switch::_trySend()
    }
    if (! _numBondedPaths) {
        return SharedPtr<Path>();   // No paths assigned to bond yet, cannot balance traffic
    }
    /**
     * balance-rr
     */
    if (_policy == ZT_BOND_POLICY_BALANCE_RR) {
        if (_packetsPerLink == 0) {
            // Randomly select a path
            return _paths[_realIdxMap[_freeRandomByte % _numBondedPaths]].p;
        }
        if (_rrPacketsSentOnCurrLink < _packetsPerLink) {
            // Continue to use this link
            ++_rrPacketsSentOnCurrLink;
            return _paths[_realIdxMap[_rrIdx]].p;
        }
        // Reset striping counter
        _rrPacketsSentOnCurrLink = 0;
        if (_numBondedPaths == 1 || _rrIdx >= (ZT_MAX_PEER_NETWORK_PATHS - 1)) {
            _rrIdx = 0;
        }
        else {
            int _tempIdx = _rrIdx;
            for (int searchCount = 0; searchCount < (_numBondedPaths - 1); searchCount++) {
                _tempIdx = (_tempIdx == (_numBondedPaths - 1)) ? 0 : _tempIdx + 1;
                if (_realIdxMap[_tempIdx] != ZT_MAX_PEER_NETWORK_PATHS) {
                    if (_paths[_realIdxMap[_tempIdx]].p && _paths[_realIdxMap[_tempIdx]].eligible) {
                        _rrIdx = _tempIdx;
                        break;
                    }
                }
            }
        }
        if (_paths[_realIdxMap[_rrIdx]].p) {
            return _paths[_realIdxMap[_rrIdx]].p;
        }
    }
    /**
     * balance-xor/aware
     */
    if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {
        if (flowId == -1) {
            // No specific path required for unclassified traffic, send on anything
            int m_idx = _realIdxMap[_freeRandomByte % _numBondedPaths];
            return _paths[m_idx].p;
        }
        Mutex::Lock _l(_flows_m);
        std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.find(flowId);
        if (likely(it != _flows.end())) {
            it->second->lastActivity = now;
            return _paths[it->second->assignedPath].p;
        }
        else {
            unsigned char entropy;
            Utils::getSecureRandom(&entropy, 1);
            SharedPtr<Flow> flow = createFlow(ZT_MAX_PEER_NETWORK_PATHS, flowId, entropy, now);
            _flows[flowId] = flow;
            return _paths[flow->assignedPath].p;
        }
    }
    return SharedPtr<Path>();
}

void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
{
    Mutex::Lock _l(_paths_m);
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p == path) {
            //_paths[i].packetValiditySamples.push(false);
        }
    }
}

void Bond::recordOutgoingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
    _freeRandomByte += (unsigned char)(packetId >> 8);   // Grab entropy to use in path selection logic
    bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
    bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));
    if (isFrame || shouldRecord) {
        Mutex::Lock _l(_paths_m);
        int pathIdx = getNominatedPathIdx(path);
        if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
            return;
        }
        if (isFrame) {
            ++(_paths[pathIdx].packetsOut);
            _lastFrame = now;
        }
        if (shouldRecord) {
            //_paths[pathIdx].expectingAckAsOf = now;
            //_paths[pathIdx].totalBytesSentSinceLastAckReceived += payloadLength;
            //_paths[pathIdx].unackedBytes += payloadLength;
            if (_paths[pathIdx].qosStatsOut.size() < ZT_QOS_MAX_PENDING_RECORDS) {
                _paths[pathIdx].qosStatsOut[packetId] = now;
            }
        }
    }
    if (flowId != ZT_QOS_NO_FLOW) {
        Mutex::Lock _l(_flows_m);
        if (_flows.count(flowId)) {
            _flows[flowId]->bytesOut += payloadLength;
        }
    }
}

void Bond::recordIncomingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, Packet::Verb verb, int32_t flowId, int64_t now)
{
    bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
    bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));
    Mutex::Lock _l(_paths_m);
    int pathIdx = getNominatedPathIdx(path);
    if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
        return;
    }
    // Take note of the time that this previously-dead path received a packet
    if (! _paths[pathIdx].alive) {
        _paths[pathIdx].lastAliveToggle = now;
    }
    if (isFrame || shouldRecord) {
        if (_paths[pathIdx].allowed()) {
            if (isFrame) {
                ++(_paths[pathIdx].packetsIn);
                _lastFrame = now;
            }
            if (shouldRecord) {
                if (_paths[pathIdx].qosStatsIn.size() < ZT_QOS_MAX_PENDING_RECORDS) {
                    // debug("Recording QoS information (table size = %d)", _paths[pathIdx].qosStatsIn.size());
                    _paths[pathIdx].qosStatsIn[packetId] = now;
                    ++(_paths[pathIdx].packetsReceivedSinceLastQoS);
                    //_paths[pathIdx].packetValiditySamples.push(true);
                }
                else {
                    // debug("QoS buffer full, will not record information");
                }
                /*
                if (_paths[pathIdx].ackStatsIn.size() < ZT_ACK_MAX_PENDING_RECORDS) {
                    //debug("Recording ACK information (table size = %d)", _paths[pathIdx].ackStatsIn.size());
                    _paths[pathIdx].ackStatsIn[packetId] = payloadLength;
                    ++(_paths[pathIdx].packetsReceivedSinceLastAck);
                }
                else {
                    debug("ACK buffer full, will not record information");
                }
                */
            }
        }
    }

    /**
     * Learn new flows and pro-actively create entries for them in the bond so
     * that the next time we send a packet out that is part of a flow we know
     * which path to use.
     */
    if ((flowId != ZT_QOS_NO_FLOW) && (_policy == ZT_BOND_POLICY_BALANCE_RR || _policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE)) {
        Mutex::Lock _l(_flows_m);
        SharedPtr<Flow> flow;
        if (! _flows.count(flowId)) {
            flow = createFlow(pathIdx, flowId, 0, now);
        }
        else {
            flow = _flows[flowId];
        }
        if (flow) {
            flow->bytesIn += payloadLength;
        }
    }
}

void Bond::receivedQoS(const SharedPtr<Path>& path, int64_t now, int count, uint64_t* rx_id, uint16_t* rx_ts)
{
    Mutex::Lock _l(_paths_m);
    int pathIdx = getNominatedPathIdx(path);
    if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
        return;
    }
    _paths[pathIdx].lastQoSReceived = now;
    // debug("received QoS packet (sampling %d frames) via %s", count, pathToStr(path).c_str());
    //  Look up egress times and compute latency values for each record
    std::map<uint64_t, uint64_t>::iterator it;
    for (int j = 0; j < count; j++) {
        it = _paths[pathIdx].qosStatsOut.find(rx_id[j]);
        if (it != _paths[pathIdx].qosStatsOut.end()) {
            _paths[pathIdx].latencySamples.push(((uint16_t)(now - it->second) - rx_ts[j]) / 2);
            // if (_paths[pathIdx].shouldAvoid) {
            //	debug("RX sample on avoided path %d", pathIdx);
            // }
            _paths[pathIdx].qosStatsOut.erase(it);
        }
    }
    _paths[pathIdx].qosRecordSize.push(count);
}

void Bond::receivedAck(int pathIdx, int64_t now, int32_t ackedBytes)
{
    /*
    Mutex::Lock _l(_paths_m);
    debug("received ACK of %d bytes on path %s, there are still %d un-acked bytes", ackedBytes, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].unackedBytes);
    _paths[pathIdx].lastAckReceived = now;
    _paths[pathIdx].unackedBytes = (ackedBytes > _paths[pathIdx].unackedBytes) ? 0 : _paths[pathIdx].unackedBytes - ackedBytes;
    */
}

int32_t Bond::generateQoSPacket(int pathIdx, int64_t now, char* qosBuffer)
{
    int32_t len = 0;
    std::map<uint64_t, uint64_t>::iterator it = _paths[pathIdx].qosStatsIn.begin();
    int i = 0;
    int numRecords = std::min(_paths[pathIdx].packetsReceivedSinceLastQoS, ZT_QOS_TABLE_SIZE);
    // debug("numRecords=%3d, packetsReceivedSinceLastQoS=%3d, _paths[pathIdx].qosStatsIn.size()=%3zu", numRecords, _paths[pathIdx].packetsReceivedSinceLastQoS, _paths[pathIdx].qosStatsIn.size());
    while (i < numRecords && it != _paths[pathIdx].qosStatsIn.end()) {
        uint64_t id = it->first;
        memcpy(qosBuffer, &id, sizeof(uint64_t));
        qosBuffer += sizeof(uint64_t);
        uint16_t holdingTime = (uint16_t)(now - it->second);
        memcpy(qosBuffer, &holdingTime, sizeof(uint16_t));
        qosBuffer += sizeof(uint16_t);
        len += sizeof(uint64_t) + sizeof(uint16_t);
        _paths[pathIdx].qosStatsIn.erase(it++);
        ++i;
    }
    return len;
}

bool Bond::assignFlowToBondedPath(SharedPtr<Flow>& flow, int64_t now, bool reassign = false)
{
    if (! _numBondedPaths) {
        debug("unable to assign flow %x (bond has no links)", flow->id);
        return false;
    }
    unsigned int bondedIdx = ZT_MAX_PEER_NETWORK_PATHS;
    if (_policy == ZT_BOND_POLICY_BALANCE_XOR) {
        bondedIdx = abs((int)(flow->id % _numBondedPaths));
        flow->assignPath(_realIdxMap[bondedIdx], now);
        ++(_paths[_realIdxMap[bondedIdx]].assignedFlowCount);
    }
    if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {
        /** balance-aware generally works like balance-xor except that it will try to
         * take into account user preferences (or default sane limits) that will discourage
         * allocating traffic to links with a lesser perceived "quality" */
        int offset = 0;
        float bestQuality = 0.0;
        int nextBestQualIdx = ZT_MAX_PEER_NETWORK_PATHS;

        if (reassign) {
            log("attempting to re-assign out-flow %04x previously on idx %d (%u / %zu flows)", flow->id, flow->assignedPath, _paths[_realIdxMap[flow->assignedPath]].assignedFlowCount, _flows.size());
        }
        else {
            debug("attempting to assign flow for the first time");
        }

        unsigned char entropy;
        Utils::getSecureRandom(&entropy, 1);
        float randomLinkCapacity = ((float)entropy / 255.0);   // Used to random but proportional choices

        while (offset < _numBondedPaths) {
            unsigned char entropy;
            Utils::getSecureRandom(&entropy, 1);

            if (reassign) {
                bondedIdx = (flow->assignedPath + offset) % (_numBondedPaths);
            }
            else {
                bondedIdx = abs((int)((entropy + offset) % (_numBondedPaths)));
            }
            // debug("idx=%d, offset=%d, randomCap=%f, actualCap=%f", bondedIdx, offset, randomLinkCapacity, _paths[_realIdxMap[bondedIdx]].relativeLinkCapacity);
            if (! _paths[_realIdxMap[bondedIdx]].p) {
                continue;
            }
            if (! _paths[_realIdxMap[bondedIdx]].shouldAvoid && randomLinkCapacity <= _paths[_realIdxMap[bondedIdx]].relativeLinkCapacity) {
                // debug("  assign out-flow %04x to link %s (%u / %zu flows)", flow->id, pathToStr(_paths[_realIdxMap[bondedIdx]].p).c_str(), _paths[_realIdxMap[bondedIdx]].assignedFlowCount, _flows.size());
                break;   // Acceptable -- No violation of quality spec
            }
            if (_paths[_realIdxMap[bondedIdx]].relativeQuality > bestQuality) {
                bestQuality = _paths[_realIdxMap[bondedIdx]].relativeQuality;
                nextBestQualIdx = bondedIdx;
                // debug("    recording next-best link %f idx %d", _paths[_realIdxMap[bondedIdx]].relativeQuality, bondedIdx);
            }
            ++offset;
        }
        if (offset < _numBondedPaths) {
            // We were (able) to find a path that didn't violate any of the user's quality requirements
            flow->assignPath(_realIdxMap[bondedIdx], now);
            ++(_paths[_realIdxMap[bondedIdx]].assignedFlowCount);
            // debug("       ABLE to find optimal link %f idx %d", _paths[_realIdxMap[bondedIdx]].relativeQuality, bondedIdx);
        }
        else {
            // We were (unable) to find a path that didn't violate at least one quality requirement, will choose next best option
            flow->assignPath(_realIdxMap[nextBestQualIdx], now);
            ++(_paths[_realIdxMap[nextBestQualIdx]].assignedFlowCount);
            // debug("       UNABLE to find, will use link %f idx %d", _paths[_realIdxMap[nextBestQualIdx]].relativeQuality, nextBestQualIdx);
        }
    }
    if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
        if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
            log("unable to assign out-flow %x (no active backup link)", flow->id);
        }
        flow->assignPath(_abPathIdx, now);
    }
    log("assign out-flow %04x to link %s (%u / %zu flows)", flow->id, pathToStr(_paths[flow->assignedPath].p).c_str(), _paths[flow->assignedPath].assignedFlowCount, _flows.size());
    return true;
}

SharedPtr<Bond::Flow> Bond::createFlow(int pathIdx, int32_t flowId, unsigned char entropy, int64_t now)
{
    if (! _numBondedPaths) {
        debug("unable to assign flow %04x (bond has no links)", flowId);
        return SharedPtr<Flow>();
    }
    if (_flows.size() >= ZT_FLOW_MAX_COUNT) {
        debug("forget oldest flow (max flows reached: %d)", ZT_FLOW_MAX_COUNT);
        forgetFlowsWhenNecessary(0, true, now);
    }
    SharedPtr<Flow> flow = new Flow(flowId, now);
    _flows[flowId] = flow;
    /**
     * Add a flow with a given Path already provided. This is the case when a packet
     * is received on a path but no flow exists, in this case we simply assign the path
     * that the remote peer chose for us.
     */
    if (pathIdx != ZT_MAX_PEER_NETWORK_PATHS) {
        flow->assignPath(pathIdx, now);
        _paths[pathIdx].assignedFlowCount++;
        debug("assign in-flow %04x to link %s (%u / %zu)", flow->id, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].assignedFlowCount, _flows.size());
    }
    /**
     * Add a flow when no path was provided. This means that it is an outgoing packet
     * and that it is up to the local peer to decide how to load-balance its transmission.
     */
    else {
        assignFlowToBondedPath(flow, now);
    }
    return flow;
}

void Bond::forgetFlowsWhenNecessary(uint64_t age, bool oldest, int64_t now)
{
    std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.begin();
    std::map<int16_t, SharedPtr<Flow> >::iterator oldestFlow = _flows.end();
    SharedPtr<Flow> expiredFlow;
    if (age) {   // Remove by specific age
        while (it != _flows.end()) {
            if (it->second->age(now) > age) {
                debug("forget flow %04x (age %" PRId64 ") (%u / %zu)", it->first, it->second->age(now), _paths[it->second->assignedPath].assignedFlowCount, (_flows.size() - 1));
                _paths[it->second->assignedPath].assignedFlowCount--;
                it = _flows.erase(it);
            }
            else {
                ++it;
            }
        }
    }
    else if (oldest) {   // Remove single oldest by natural expiration
        uint64_t maxAge = 0;
        while (it != _flows.end()) {
            if (it->second->age(now) > maxAge) {
                maxAge = (now - it->second->age(now));
                oldestFlow = it;
            }
            ++it;
        }
        if (oldestFlow != _flows.end()) {
            debug("forget oldest flow %04x (age %" PRId64 ") (total flows: %zu)", oldestFlow->first, oldestFlow->second->age(now), _flows.size() - 1);
            _paths[oldestFlow->second->assignedPath].assignedFlowCount--;
            _flows.erase(oldestFlow);
        }
    }
}

void Bond::processIncomingPathNegotiationRequest(uint64_t now, SharedPtr<Path>& path, int16_t remoteUtility)
{
    char pathStr[64] = { 0 };
    if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
        return;
    }
    Mutex::Lock _l(_paths_m);
    int pathIdx = getNominatedPathIdx(path);
    if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
        return;
    }
    _paths[pathIdx].p->address().toString(pathStr);
    if (! _lastPathNegotiationCheck) {
        return;
    }
    SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[pathIdx].p->localSocket());
    if (link) {
        if (remoteUtility > _localUtility) {
            _paths[pathIdx].p->address().toString(pathStr);
            debug("peer suggests alternate link %s/%s, remote utility (%d) greater than local utility (%d), switching to suggested link\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
            _negotiatedPathIdx = pathIdx;
        }
        if (remoteUtility < _localUtility) {
            debug("peer suggests alternate link %s/%s, remote utility (%d) less than local utility (%d), not switching\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
        }
        if (remoteUtility == _localUtility) {
            debug("peer suggests alternate link %s/%s, remote utility (%d) equal to local utility (%d)\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
            if (_peer->_id.address().toInt() > RR->node->identity().address().toInt()) {
                debug("agree with peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);
                _negotiatedPathIdx = pathIdx;
            }
            else {
                debug("ignore petition from peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);
            }
        }
    }
}

void Bond::pathNegotiationCheck(void* tPtr, int64_t now)
{
    int maxInPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
    int maxOutPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
    uint64_t maxInCount = 0;
    uint64_t maxOutCount = 0;
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (! _paths[i].p) {
            continue;
        }
        if (_paths[i].packetsIn > maxInCount) {
            maxInCount = _paths[i].packetsIn;
            maxInPathIdx = i;
        }
        if (_paths[i].packetsOut > maxOutCount) {
            maxOutCount = _paths[i].packetsOut;
            maxOutPathIdx = i;
        }
        _paths[i].resetPacketCounts();
    }
    bool _peerLinksSynchronized = ((maxInPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxOutPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxInPathIdx != maxOutPathIdx)) ? false : true;
    /**
     * Determine utility and attempt to petition remote peer to switch to our chosen path
     */
    if (! _peerLinksSynchronized) {
        _localUtility = _paths[maxOutPathIdx].failoverScore - _paths[maxInPathIdx].failoverScore;
        if (_paths[maxOutPathIdx].negotiated) {
            _localUtility -= ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;
        }
        if ((now - _lastSentPathNegotiationRequest) > ZT_PATH_NEGOTIATION_CUTOFF_TIME) {
            // fprintf(stderr, "BT: (sync) it's been long enough, sending more requests.\n");
            _numSentPathNegotiationRequests = 0;
        }
        if (_numSentPathNegotiationRequests < ZT_PATH_NEGOTIATION_TRY_COUNT) {
            if (_localUtility >= 0) {
                // fprintf(stderr, "BT: (sync) paths appear to be out of sync (utility=%d)\n", _localUtility);
                sendPATH_NEGOTIATION_REQUEST(tPtr, _paths[maxOutPathIdx].p);
                ++_numSentPathNegotiationRequests;
                _lastSentPathNegotiationRequest = now;
                // fprintf(stderr, "sending request to use %s on %s, ls=%llx, utility=%d\n", pathStr, link->ifname().c_str(), _paths[maxOutPathIdx].p->localSocket(), _localUtility);
            }
        }
        /**
         * Give up negotiating and consider switching
         */
        else if ((now - _lastSentPathNegotiationRequest) > (2 * ZT_BOND_OPTIMIZE_INTERVAL)) {
            if (_localUtility == 0) {
                // There's no loss to us, just switch without sending a another request
                // fprintf(stderr, "BT: (sync) giving up, switching to remote peer's path.\n");
                _negotiatedPathIdx = maxInPathIdx;
            }
        }
    }
}

void Bond::sendPATH_NEGOTIATION_REQUEST(void* tPtr, int pathIdx)
{
    debug("send link negotiation request to peer via link %s, local utility is %d", pathToStr(_paths[pathIdx].p).c_str(), _localUtility);
    if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
        return;
    }
    Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_PATH_NEGOTIATION_REQUEST);
    outp.append<int16_t>(_localUtility);
    if (_paths[pathIdx].p->address()) {
        Metrics::pkt_path_negotiation_request_out++;
        outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());
        RR->node->putPacket(tPtr, _paths[pathIdx].p->localSocket(), _paths[pathIdx].p->address(), outp.data(), outp.size());
        _overheadBytes += outp.size();
    }
}

void Bond::sendACK(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now)
{
    /*
    Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_ACK);
    int32_t bytesToAck = 0;
    std::map<uint64_t, uint64_t>::iterator it = _paths[pathIdx].ackStatsIn.begin();
    while (it != _paths[pathIdx].ackStatsIn.end()) {
        bytesToAck += it->second;
        ++it;
    }
    debug("sending ACK of %d bytes on path %s (table size = %zu)", bytesToAck, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].ackStatsIn.size());
    outp.append<uint32_t>(bytesToAck);
    if (atAddress) {
        outp.armor(_peer->key(), false, _peer->aesKeysIfSupported());
        RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());
    }
    else {
        RR->sw->send(tPtr, outp, false);
    }
    _paths[pathIdx].ackStatsIn.clear();
    _paths[pathIdx].packetsReceivedSinceLastAck = 0;
    _paths[pathIdx].lastAckSent = now;
    */
}

void Bond::sendQOS_MEASUREMENT(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now)
{
    int64_t _now = RR->node->now();
    Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_QOS_MEASUREMENT);
    char qosData[ZT_QOS_MAX_PACKET_SIZE];
    int16_t len = generateQoSPacket(pathIdx, _now, qosData);
    if (len) {
        // debug("sending QOS via link %s (len=%d)", pathToStr(_paths[pathIdx].p).c_str(), len);
        outp.append(qosData, len);
        if (atAddress) {
            outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());
            RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());
        }
        else {
            RR->sw->send(tPtr, outp, false);
        }
        Metrics::pkt_qos_out++;
        _paths[pathIdx].packetsReceivedSinceLastQoS = 0;
        _paths[pathIdx].lastQoSMeasurement = now;
        _overheadBytes += outp.size();
    }
}

void Bond::processBackgroundBondTasks(void* tPtr, int64_t now)
{
    if (! _run) {
        return;
    }
    if (! _peer->_localMultipathSupported || (now - _lastBackgroundTaskCheck) < ZT_BOND_BACKGROUND_TASK_MIN_INTERVAL) {
        return;
    }
    _lastBackgroundTaskCheck = now;
    Mutex::Lock _l(_paths_m);

    curateBond(now, false);
    if ((now - _lastQualityEstimation) > _qualityEstimationInterval) {
        _lastQualityEstimation = now;
        estimatePathQuality(now);
    }
    dumpInfo(now, false);

    // Send ambient monitoring traffic
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p && _paths[i].allowed()) {
            if (_isLeaf) {
                if ((_monitorInterval > 0) && (((now - _paths[i].p->_lastIn) >= (_paths[i].alive ? _monitorInterval : _failoverInterval)))) {
                    if ((_peer->remoteVersionProtocol() >= 5) && (! ((_peer->remoteVersionMajor() == 1) && (_peer->remoteVersionMinor() == 1) && (_peer->remoteVersionRevision() == 0)))) {
                        Packet outp(_peer->address(), RR->identity.address(), Packet::VERB_ECHO);   // ECHO (this is our bond's heartbeat)
                        outp.armor(_peer->key(), true, false, _peer->aesKeysIfSupported(), _peer->identity());
                        RR->node->expectReplyTo(outp.packetId());
                        RR->node->putPacket(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), outp.data(), outp.size());
                        _paths[i].p->_lastOut = now;
                        _overheadBytes += outp.size();
                        Metrics::pkt_echo_out++;
                        // debug("tx: verb 0x%-2x of len %4d via %s (ECHO)", Packet::VERB_ECHO, outp.size(), pathToStr(_paths[i].p).c_str());
                    }
                }
                // QOS
                if (_paths[i].needsToSendQoS(now, _qosSendInterval)) {
                    sendQOS_MEASUREMENT(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now);
                }
                // ACK
                /*
                if (_paths[i].needsToSendAck(now, _ackSendInterval)) {
                    sendACK(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now);
                }
                */
            }
        }
    }
    // Perform periodic background tasks unique to each bonding policy
    switch (_policy) {
        case ZT_BOND_POLICY_ACTIVE_BACKUP:
            processActiveBackupTasks(tPtr, now);
            break;
        case ZT_BOND_POLICY_BROADCAST:
            break;
        case ZT_BOND_POLICY_BALANCE_RR:
        case ZT_BOND_POLICY_BALANCE_XOR:
        case ZT_BOND_POLICY_BALANCE_AWARE:
            processBalanceTasks(now);
            break;
        default:
            break;
    }
    // Check whether or not a path negotiation needs to be performed
    if (((now - _lastPathNegotiationCheck) > ZT_BOND_OPTIMIZE_INTERVAL) && _allowPathNegotiation) {
        _lastPathNegotiationCheck = now;
        pathNegotiationCheck(tPtr, now);
    }
}

void Bond::curateBond(int64_t now, bool rebuildBond)
{
    uint8_t tmpNumAliveLinks = 0;
    uint8_t tmpNumTotalLinks = 0;

    /**
     * Update path state variables. State variables are used so that critical
     * blocks that perform fast packet processing won't need to make as many
     * function calls or computations.
     */
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (! _paths[i].p) {
            continue;
        }

        // Whether this path is still in its trial period
        bool inTrial = (now - _paths[i].whenNominated) < ZT_BOND_OPTIMIZE_INTERVAL;

        /**
         * Remove expired or invalid links from bond
         */
        SharedPtr<Link> link = getLink(_paths[i].p);
        if (! link) {
            log("link is no longer valid, removing from bond");
            _paths[i].p->_valid = false;
            _paths[i] = NominatedPath();
            _paths[i].p = SharedPtr<Path>();
            continue;
        }
        if ((now - _paths[i].lastEligibility) > (ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD) && ! inTrial) {
            log("link (%s) has expired or is invalid, removing from bond", pathToStr(_paths[i].p).c_str());
            _paths[i] = NominatedPath();
            _paths[i].p = SharedPtr<Path>();
            continue;
        }

        tmpNumTotalLinks++;
        if (_paths[i].eligible) {
            tmpNumAliveLinks++;
        }

        /**
         * Determine aliveness
         */
        _paths[i].alive = _isLeaf ? (now - _paths[i].p->_lastIn) < _failoverInterval : (now - _paths[i].p->_lastIn) < ZT_PEER_PATH_EXPIRATION;

        /**
         * Determine current eligibility
         */
        bool currEligibility = false;
        // Simple RX age (driven by packets of any type and gratuitous VERB_HELLOs)
        bool acceptableAge = _isLeaf ? (_paths[i].p->age(now) < (_failoverInterval + _downDelay)) : _paths[i].alive;
        // Whether we've waited long enough since the link last came online
        bool satisfiedUpDelay = (now - _paths[i].lastAliveToggle) >= _upDelay;
        // How long since the last QoS was received (Must be less than ZT_PEER_PATH_EXPIRATION since the remote peer's _qosSendInterval isn't known)
        bool acceptableQoSAge = (_paths[i].lastQoSReceived == 0 && inTrial) || ((now - _paths[i].lastQoSReceived) < ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD);

        // Allow active-backup to operate without the receipt of QoS records
        // This may be expanded to the other modes as an option
        if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
            acceptableQoSAge = true;
        }

        currEligibility = _paths[i].allowed() && ((acceptableAge && satisfiedUpDelay && acceptableQoSAge) || inTrial);

        if (currEligibility) {
            _paths[i].lastEligibility = now;
        }

        /**
         * Note eligibility state change (if any) and take appropriate action
         */
        if (currEligibility != _paths[i].eligible) {
            if (currEligibility == 0) {
                log("link %s is no longer eligible (reason: allowed=%d, age=%d, ud=%d, qos=%d, trial=%d)", pathToStr(_paths[i].p).c_str(), _paths[i].allowed(), acceptableAge, satisfiedUpDelay, acceptableQoSAge, inTrial);
            }
            if (currEligibility == 1) {
                log("link %s is eligible", pathToStr(_paths[i].p).c_str());
            }
            dumpPathStatus(now, i);
            if (currEligibility) {
                rebuildBond = true;
            }
            if (! currEligibility) {
                _paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, ! currEligibility);
                if (_paths[i].bonded) {
                    debug("link %s was bonded, flow reallocation will occur soon", pathToStr(_paths[i].p).c_str());
                    rebuildBond = true;
                    _paths[i].shouldAvoid = true;
                    _paths[i].bonded = false;
                }
            }
        }
        if (currEligibility) {
            _paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, false);
        }
        _paths[i].eligible = currEligibility;
    }

    /**
     * Trigger status report if number of links change
     */
    _numAliveLinks = tmpNumAliveLinks;
    _numTotalLinks = tmpNumTotalLinks;
    if ((_numAliveLinks != tmpNumAliveLinks) || (_numTotalLinks != tmpNumTotalLinks)) {
        dumpInfo(now, true);
    }

    /**
     * Check for failure of (all) primary links and inform bond to use spares if present
     */
    bool foundUsablePrimaryPath = false;
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        // debug("[%d], bonded=%d, alive=%d", i, _paths[i].bonded , _paths[i].alive);
        if (_paths[i].p && _paths[i].bonded && _paths[i].alive) {
            foundUsablePrimaryPath = true;
        }
    }
    rebuildBond = rebuildBond ? true : ! foundUsablePrimaryPath;

    /**
     * Curate the set of paths that are part of the bond proper. Select a set of paths
     * per logical link according to eligibility and user-specified constraints.
     */
    int updatedBondedPathCount = 0;
    if ((_policy == ZT_BOND_POLICY_BALANCE_RR) || (_policy == ZT_BOND_POLICY_BALANCE_XOR) || (_policy == ZT_BOND_POLICY_BALANCE_AWARE)) {
        if (! _numBondedPaths) {
            rebuildBond = true;
        }
        if (rebuildBond) {
            // Clear previous bonded index mapping
            for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
                _realIdxMap[i] = ZT_MAX_PEER_NETWORK_PATHS;
                _paths[i].bonded = false;
            }

            // Build map associating paths with local physical links. Will be selected from in next step
            std::map<SharedPtr<Link>, std::vector<int> > linkMap;
            for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
                if (_paths[i].p) {
                    SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
                    if (link) {
                        linkMap[link].push_back(i);
                    }
                }
            }
            // Re-form bond from link<->path map
            std::map<SharedPtr<Link>, std::vector<int> >::iterator it = linkMap.begin();
            while (it != linkMap.end()) {
                SharedPtr<Link> link = it->first;

                // Bond a spare link if required (no viable primary links left)
                if (! foundUsablePrimaryPath) {
                    // debug("no usable primary links remain, will attempt to use spare if available");
                    for (int j = 0; j < it->second.size(); j++) {
                        int idx = it->second.at(j);
                        if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || ! _paths[idx].isSpare()) {
                            continue;
                        }
                        addPathToBond(idx, updatedBondedPathCount);
                        ++updatedBondedPathCount;
                        debug("add %s (spare)", pathToStr(_paths[idx].p).c_str());
                    }
                }

                int ipvPref = link->ipvPref();

                // If user has no address type preference, then use every path we find on a link
                if (ipvPref == 0) {
                    for (int j = 0; j < it->second.size(); j++) {
                        int idx = it->second.at(j);
                        if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) {
                            continue;
                        }
                        addPathToBond(idx, updatedBondedPathCount);
                        ++updatedBondedPathCount;
                        debug("add %s (no user addr preference)", pathToStr(_paths[idx].p).c_str());
                    }
                }
                // If the user prefers to only use one address type (IPv4 or IPv6)
                if (ipvPref == 4 || ipvPref == 6) {
                    for (int j = 0; j < it->second.size(); j++) {
                        int idx = it->second.at(j);
                        if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) {
                            continue;
                        }
                        if (! _paths[idx].allowed()) {
                            debug("did not add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
                            continue;
                        }
                        addPathToBond(idx, updatedBondedPathCount);
                        ++updatedBondedPathCount;
                        debug("add path %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
                    }
                }
                // If the users prefers one address type to another, try to find at least
                // one path of that type before considering others.
                if (ipvPref == 46 || ipvPref == 64) {
                    bool foundPreferredPath = false;
                    // Search for preferred paths
                    for (int j = 0; j < it->second.size(); j++) {
                        int idx = it->second.at(j);
                        if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed() || _paths[idx].isSpare()) {
                            continue;
                        }
                        if (_paths[idx].preferred()) {
                            addPathToBond(idx, updatedBondedPathCount);
                            ++updatedBondedPathCount;
                            debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
                            foundPreferredPath = true;
                        }
                    }
                    // Unable to find a path that matches user preference, settle for another address type
                    if (! foundPreferredPath) {
                        debug("did not find first-choice path type on link %s (user preference %d)", link->ifname().c_str(), ipvPref);
                        for (int j = 0; j < it->second.size(); j++) {
                            int idx = it->second.at(j);
                            if (! _paths[idx].p || ! _paths[idx].eligible || _paths[idx].isSpare()) {
                                continue;
                            }
                            addPathToBond(idx, updatedBondedPathCount);
                            ++updatedBondedPathCount;
                            debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
                            foundPreferredPath = true;
                        }
                    }
                }
                ++it;   // Next link
            }
            _numBondedPaths = updatedBondedPathCount;
            if (_policy == ZT_BOND_POLICY_BALANCE_RR) {
                // Cause a RR reset since the current index might no longer be valid
                _rrPacketsSentOnCurrLink = _packetsPerLink;
                _rrIdx = 0;
            }
        }
    }
    if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
        for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (_paths[i].p && _paths[i].bonded) {
                updatedBondedPathCount++;
            }
        }
        _numBondedPaths = updatedBondedPathCount;
    }
}

void Bond::estimatePathQuality(int64_t now)
{
    float lat[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
    float pdv[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
    float plr[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
    float per[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };

    float maxLAT = 0;
    float maxPDV = 0;
    float maxPLR = 0;
    float maxPER = 0;

    float absoluteQuality[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };

    float totQuality = 0.0f;

    // Process observation samples, compute summary statistics, and compute relative link qualities
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (! _paths[i].p || ! _paths[i].allowed()) {
            continue;
        }
        // Drain unacknowledged QoS records
        int qosRecordTimeout = (_qosSendInterval * 3);
        std::map<uint64_t, uint64_t>::iterator it = _paths[i].qosStatsOut.begin();
        int numDroppedQosOutRecords = 0;
        while (it != _paths[i].qosStatsOut.end()) {
            if ((now - it->second) >= qosRecordTimeout) {
                it = _paths[i].qosStatsOut.erase(it);
                ++numDroppedQosOutRecords;
            }
            else {
                ++it;
            }
        }
        if (numDroppedQosOutRecords) {
            // debug("dropped %d QOS out-records", numDroppedQosOutRecords);
        }

        /*
        for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (! _paths[i].p) {
                continue;
            }
            // if ((now - _paths[i].lastAckReceived) > ackSendInterval) {
            //	debug("been a while since ACK");
            //	if (_paths[i].unackedBytes > 0) {
            //		_paths[i].unackedBytes / _paths[i].bytesSen
            //	}
            // }
        }
        */

        it = _paths[i].qosStatsIn.begin();
        int numDroppedQosInRecords = 0;
        while (it != _paths[i].qosStatsIn.end()) {
            if ((now - it->second) >= qosRecordTimeout) {
                it = _paths[i].qosStatsIn.erase(it);
                ++numDroppedQosInRecords;
            }
            else {
                ++it;
            }
        }
        if (numDroppedQosInRecords) {
            // debug("dropped %d QOS in-records", numDroppedQosInRecords);
        }

        absoluteQuality[i] = 0;
        totQuality = 0;
        // Normalize raw observations according to sane limits and/or user specified values
        lat[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latency, 0, _qw[ZT_QOS_LAT_MAX_IDX], 0, 1));
        pdv[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyVariance, 0, _qw[ZT_QOS_PDV_MAX_IDX], 0, 1));
        plr[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetLossRatio, 0, _qw[ZT_QOS_PLR_MAX_IDX], 0, 1));
        per[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetErrorRatio, 0, _qw[ZT_QOS_PER_MAX_IDX], 0, 1));
        // Record bond-wide maximums to determine relative values
        maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT;
        maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV;
        maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR;
        maxPER = per[i] > maxPER ? per[i] : maxPER;
    }

    // Compute relative user-specified link capacities (may change during life of Bond)
    int maxObservedLinkCap = 0;
    // Find current maximum
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p && _paths[i].allowed()) {
            SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
            if (link) {
                int linkSpeed = link->capacity();
                _paths[i].p->_givenLinkSpeed = linkSpeed;
                _paths[i].p->_mtu = link->mtu() ? link->mtu() : _paths[i].p->_mtu;
                _paths[i].p->_assignedFlowCount = _paths[i].assignedFlowCount;
                maxObservedLinkCap = linkSpeed > maxObservedLinkCap ? linkSpeed : maxObservedLinkCap;
            }
        }
    }
    // Compute relative link capacity (Used for weighting traffic allocations)
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p && _paths[i].allowed()) {
            SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
            if (link) {
                float relativeCapacity = (link->capacity() / (float)maxObservedLinkCap);
                link->setRelativeCapacity(relativeCapacity);
                _paths[i].relativeLinkCapacity = relativeCapacity;
            }
        }
    }

    // Convert metrics to relative quantities and apply contribution weights
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p && _paths[i].bonded) {
            absoluteQuality[i] += ((maxLAT > 0.0f ? lat[i] / maxLAT : 0.0f) * _qw[ZT_QOS_LAT_WEIGHT_IDX]);
            absoluteQuality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qw[ZT_QOS_PDV_WEIGHT_IDX]);
            absoluteQuality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qw[ZT_QOS_PLR_WEIGHT_IDX]);
            absoluteQuality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qw[ZT_QOS_PER_WEIGHT_IDX]);
            absoluteQuality[i] *= _paths[i].relativeLinkCapacity;
            totQuality += absoluteQuality[i];
        }
    }

    // Compute quality of link relative to all others in the bond (also accounting for stated link capacity)
    if (totQuality > 0.0) {
        for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (_paths[i].p && _paths[i].bonded) {
                _paths[i].relativeQuality = absoluteQuality[i] / totQuality;
                // debug("[%2d], abs=%f, tot=%f, rel=%f, relcap=%f", i, absoluteQuality[i], totQuality, _paths[i].relativeQuality, _paths[i].relativeLinkCapacity);
            }
        }
    }

    // Compute summary statistics
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (! _paths[i].p || ! _paths[i].allowed()) {
            continue;
        }
        // Compute/Smooth average of real-world observations
        if (_paths[i].latencySamples.count() >= ZT_QOS_SHORTTERM_SAMPLE_WIN_MIN_REQ_SIZE) {
            _paths[i].latency = _paths[i].latencySamples.mean();
        }
        if (_paths[i].latencySamples.count() >= ZT_QOS_SHORTTERM_SAMPLE_WIN_MIN_REQ_SIZE) {
            _paths[i].latencyVariance = _paths[i].latencySamples.stddev();
        }

        // Write values to external path object so that it can be propagated to the user
        _paths[i].p->_latencyMean = _paths[i].latency;
        _paths[i].p->_latencyVariance = _paths[i].latencyVariance;
        _paths[i].p->_packetLossRatio = _paths[i].packetLossRatio;
        _paths[i].p->_packetErrorRatio = _paths[i].packetErrorRatio;
        _paths[i].p->_bonded = _paths[i].bonded;
        _paths[i].p->_eligible = _paths[i].eligible;
        //_paths[i].packetErrorRatio = 1.0 - (_paths[i].packetValiditySamples.count() ? _paths[i].packetValiditySamples.mean() : 1.0);
        // _valid is written elsewhere
        _paths[i].p->_relativeQuality = _paths[i].relativeQuality;
        _paths[i].p->_localPort = _paths[i].localPort;
    }

    // Flag links for avoidance
    for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (! _paths[i].p || ! _paths[i].allowed()) {
            continue;
        }
        bool shouldAvoid = false;
        if (! _paths[i].shouldAvoid) {
            if (_paths[i].latency > _qw[ZT_QOS_LAT_MAX_IDX]) {
                log("avoiding link %s because (lat %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].latency, _qw[ZT_QOS_LAT_MAX_IDX]);
                shouldAvoid = true;
            }
            if (_paths[i].latencyVariance > _qw[ZT_QOS_PDV_MAX_IDX]) {
                log("avoiding link %s because (pdv %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].latencyVariance, _qw[ZT_QOS_PDV_MAX_IDX]);
                shouldAvoid = true;
            }
            if (_paths[i].packetErrorRatio > _qw[ZT_QOS_PER_MAX_IDX]) {
                log("avoiding link %s because (per %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].packetErrorRatio, _qw[ZT_QOS_PER_MAX_IDX]);
                shouldAvoid = true;
            }
            if (_paths[i].packetLossRatio > _qw[ZT_QOS_PLR_MAX_IDX]) {
                log("avoiding link %s because (plr %6.4f > %6.4f)", pathToStr(_paths[i].p).c_str(), _paths[i].packetLossRatio, _qw[ZT_QOS_PLR_MAX_IDX]);
                shouldAvoid = true;
            }
            _paths[i].shouldAvoid = shouldAvoid;
        }
        else {
            if (! shouldAvoid) {
                log("no longer avoiding link %s", pathToStr(_paths[i].p).c_str());
                _paths[i].shouldAvoid = false;
            }
        }
    }
}

void Bond::processBalanceTasks(int64_t now)
{
    if (! _numBondedPaths) {
        return;
    }
    /**
     * Clean up and reset flows if necessary
     */
    if ((now - _lastFlowExpirationCheck) > ZT_PEER_PATH_EXPIRATION) {
        Mutex::Lock _l(_flows_m);
        forgetFlowsWhenNecessary(ZT_PEER_PATH_EXPIRATION, false, now);
        std::map<int16_t, SharedPtr<Flow> >::iterator it = _flows.begin();
        while (it != _flows.end()) {
            it->second->resetByteCounts();
            ++it;
        }
        _lastFlowExpirationCheck = now;
    }
    /**
     * Move (all) flows from dead paths
     */
    if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {
        Mutex::Lock _l(_flows_m);
        std::map<int16_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();
        while (flow_it != _flows.end()) {
            if (_paths[flow_it->second->assignedPath].p) {
                int originalPathIdx = flow_it->second->assignedPath;
                if (! _paths[originalPathIdx].eligible) {
                    log("moving all flows from dead link %s", pathToStr(_paths[originalPathIdx].p).c_str());
                    if (assignFlowToBondedPath(flow_it->second, now, true)) {
                        _paths[originalPathIdx].assignedFlowCount--;
                    }
                }
            }
            ++flow_it;
        }
    }
    /**
     * Move (some) flows from low quality paths
     */
    if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {
        Mutex::Lock _l(_flows_m);
        std::map<int16_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();
        while (flow_it != _flows.end()) {
            if (_paths[flow_it->second->assignedPath].p) {
                int originalPathIdx = flow_it->second->assignedPath;
                if (_paths[originalPathIdx].shouldAvoid) {
                    if (assignFlowToBondedPath(flow_it->second, now, true)) {
                        _paths[originalPathIdx].assignedFlowCount--;
                        return;   // Only move one flow at a time
                    }
                }
            }
            ++flow_it;
        }
    }
}

void Bond::dequeueNextActiveBackupPath(uint64_t now)
{
    if (_abFailoverQueue.empty()) {
        return;
    }
    _abPathIdx = _abFailoverQueue.front();
    _abFailoverQueue.pop_front();
    _lastActiveBackupPathChange = now;
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p) {
            _paths[i].resetPacketCounts();
        }
    }
}

bool Bond::abForciblyRotateLink()
{
    Mutex::Lock _l(_paths_m);
    if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
        int prevPathIdx = _abPathIdx;
        dequeueNextActiveBackupPath(RR->node->now());
        log("active link rotated from %s to %s", pathToStr(_paths[prevPathIdx].p).c_str(), pathToStr(_paths[_abPathIdx].p).c_str());
        return true;
    }
    return false;
}

void Bond::processActiveBackupTasks(void* tPtr, int64_t now)
{
    int prevActiveBackupPathIdx = _abPathIdx;
    int nonPreferredPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
    bool foundPathOnPrimaryLink = false;
    bool foundPreferredPath = false;

    if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && ! _paths[_abPathIdx].p) {
        _abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
        log("main active-backup path has been removed");
    }

    /**
     * Generate periodic status report
     */
    if ((now - _lastBondStatusLog) > ZT_BOND_STATUS_INTERVAL) {
        _lastBondStatusLog = now;
        if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
            log("no active link");
        }
        else if (_paths[_abPathIdx].p) {
            log("active link is %s, failover queue size is %zu", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());
        }
        if (_abFailoverQueue.empty()) {
            log("failover queue is empty, bond is no longer fault-tolerant");
        }
    }
    /**
     * Select initial "active" active-backup link
     */
    if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
        /**
         * [Automatic mode]
         * The user has not explicitly specified links or their failover schedule,
         * the bonding policy will now select the first eligible path and set it as
         * its active backup path, if a substantially better path is detected the bonding
         * policy will assign it as the new active backup path. If the path fails it will
         * simply find the next eligible path.
         */
        if (! userHasSpecifiedLinks()) {
            for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
                if (_paths[i].p && _paths[i].eligible) {
                    SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
                    if (link) {
                        log("found eligible link %s", pathToStr(_paths[i].p).c_str());
                        _abPathIdx = i;
                        break;
                    }
                }
            }
        }

        /**
         * [Manual mode]
         * The user has specified links or failover rules that the bonding policy should adhere to.
         */
        else if (userHasSpecifiedLinks()) {
            if (userHasSpecifiedPrimaryLink()) {
                for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
                    if (! _paths[i].p) {
                        continue;
                    }
                    SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
                    if (link) {
                        if (_paths[i].eligible && link->primary()) {
                            if (! _paths[i].preferred()) {
                                // Found path on primary link, take note in case we don't find a preferred path
                                nonPreferredPathIdx = i;
                                foundPathOnPrimaryLink = true;
                            }
                            if (_paths[i].preferred()) {
                                _abPathIdx = i;
                                foundPathOnPrimaryLink = true;
                                if (_paths[_abPathIdx].p) {
                                    SharedPtr<Link> abLink = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());
                                    if (abLink) {
                                        log("found preferred primary link (_abPathIdx=%d), %s", _abPathIdx, pathToStr(_paths[_abPathIdx].p).c_str());
                                        foundPreferredPath = true;
                                    }
                                    break;   // Found preferred path on primary link
                                }
                            }
                        }
                    }
                }
                if (! foundPreferredPath && foundPathOnPrimaryLink && (nonPreferredPathIdx != ZT_MAX_PEER_NETWORK_PATHS)) {
                    log("found non-preferred primary link (_abPathIdx=%d)", _abPathIdx);
                    _abPathIdx = nonPreferredPathIdx;
                }
            }

            else if (! userHasSpecifiedPrimaryLink()) {
                for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
                    if (_paths[i].p && _paths[i].eligible) {
                        _abPathIdx = i;
                        break;
                    }
                }
                if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS) {
                    if (_paths[_abPathIdx].p) {
                        SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());
                        if (link) {
                            log("select non-primary link %s", pathToStr(_paths[_abPathIdx].p).c_str());
                        }
                    }
                }
            }
        }
    }

    // Short-circuit if we don't have an active link yet. Everything below is optimization from the base case
    if (_abPathIdx < 0 || _abPathIdx == ZT_MAX_PEER_NETWORK_PATHS || (! _paths[_abPathIdx].p)) {
        return;
    }

    // Remove ineligible paths from the failover link queue
    for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end();) {
        if (! _paths[(*it)].p) {
            log("link is no longer valid, removing from failover queue (%zu links remain in queue)", _abFailoverQueue.size());
            it = _abFailoverQueue.erase(it);
            continue;
        }
        if (_paths[(*it)].p && ! _paths[(*it)].eligible) {
            SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[(*it)].p->localSocket());
            if (link) {
                log("link %s is ineligible, removing from failover queue (%zu links remain in queue)", pathToStr(_paths[(*it)].p).c_str(), _abFailoverQueue.size());
            }
            it = _abFailoverQueue.erase(it);
            continue;
        }
        else {
            ++it;
        }
    }
    /**
     * Failover instructions were provided by user, build queue according those as well as IPv
     * preference, disregarding performance.
     */
    if (userHasSpecifiedFailoverInstructions()) {
        /**
         * Clear failover scores
         */
        for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (_paths[i].p) {
                _paths[i].failoverScore = 0;
            }
        }
        // Follow user-specified failover instructions
        for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {
                continue;
            }
            SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
            if (! link) {
                continue;
            }
            int failoverScoreHandicap = _paths[i].failoverScore;
            if (_paths[i].preferred()) {
                failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PREFERRED;
            }
            if (link->primary()) {
                // If using "optimize" primary re-select mode, ignore user link designations
                failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PRIMARY;
            }
            if (! _paths[i].failoverScore) {
                // If we didn't inherit a failover score from a "parent" that wants to use this path as a failover
                int newHandicap = failoverScoreHandicap ? failoverScoreHandicap : (_paths[i].relativeQuality * 255.0);
                _paths[i].failoverScore = newHandicap;
            }
            SharedPtr<Link> failoverLink;
            if (link->failoverToLink().length()) {
                failoverLink = RR->bc->getLinkByName(_policyAlias, link->failoverToLink());
            }
            if (failoverLink) {
                for (int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; j++) {
                    if (_paths[j].p && getLink(_paths[j].p) == failoverLink.ptr()) {
                        int inheritedHandicap = failoverScoreHandicap - 10;
                        int newHandicap = _paths[j].failoverScore > inheritedHandicap ? _paths[j].failoverScore : inheritedHandicap;
                        if (! _paths[j].preferred()) {
                            newHandicap--;
                        }
                        _paths[j].failoverScore = newHandicap;
                    }
                }
            }
            if (_paths[i].p) {
                if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {
                    bool bFoundPathInQueue = false;
                    for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {
                        if (_paths[(*it)].p && (_paths[i].p.ptr() == _paths[(*it)].p.ptr())) {
                            bFoundPathInQueue = true;
                        }
                    }
                    if (! bFoundPathInQueue) {
                        _abFailoverQueue.push_back(i);
                        log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());
                        addPathToBond(i, 0);
                    }
                }
            }
        }
    }
    /**
     * No failover instructions provided by user, build queue according to performance
     * and IPv preference.
     */
    else if (! userHasSpecifiedFailoverInstructions()) {
        for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
            if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {
                continue;
            }
            int failoverScoreHandicap = 0;
            if (_paths[i].preferred()) {
                failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PREFERRED;
            }
            if (! _paths[i].eligible) {
                failoverScoreHandicap = -10000;
            }
            SharedPtr<Link> link = getLink(_paths[i].p);
            if (! link) {
                continue;
            }
            if (link->primary() && _abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
                // If using "optimize" primary re-select mode, ignore user link designations
                failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PRIMARY;
            }
            /*
            if (_paths[i].p.ptr() == _paths[_negotiatedPathIdx].p.ptr()) {
                _paths[i].negotiated = true;
                failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;
            }
            else {
                _paths[i].negotiated = false;
            }
            */
            _paths[i].failoverScore = _paths[i].relativeQuality + failoverScoreHandicap;
            if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {
                bool bFoundPathInQueue = false;
                for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {
                    if (_paths[i].p.ptr() == _paths[(*it)].p.ptr()) {
                        bFoundPathInQueue = true;
                    }
                }
                if (! bFoundPathInQueue) {
                    _abFailoverQueue.push_back(i);
                    log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());
                    addPathToBond(i, 0);
                }
            }
        }
    }
    /*
    // Sort queue based on performance
    if (! _abFailoverQueue.empty()) {
        for (int i = 0; i < _abFailoverQueue.size(); i++) {
            int value_to_insert = _abFailoverQueue[i];
            int hole_position = i;
            while (hole_position > 0 && (_abFailoverQueue[hole_position - 1] > value_to_insert)) {
                _abFailoverQueue[hole_position] = _abFailoverQueue[hole_position - 1];
                hole_position = hole_position - 1;
            }
            _abFailoverQueue[hole_position] = value_to_insert;
        }
    }*/

    /**
     * Short-circuit if we have no queued paths
     */
    if (_abFailoverQueue.empty()) {
        return;
    }

    /**
     * Fulfill primary re-select obligations
     */
    if (! _paths[_abPathIdx].eligible) {   // Implicit ZT_BOND_RESELECTION_POLICY_FAILURE
        log("link %s has failed, select link from failover queue (%zu links in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());
        if (! _abFailoverQueue.empty()) {
            dequeueNextActiveBackupPath(now);
            log("active link switched to %s", pathToStr(_paths[_abPathIdx].p).c_str());
        }
        else {
            log("failover queue is empty, no links to choose from");
        }
    }
    /**
     * Detect change to prevent flopping during later optimization step.
     */
    if (prevActiveBackupPathIdx != _abPathIdx) {
        _lastActiveBackupPathChange = now;
    }
    if (_abFailoverQueue.empty()) {
        return;   // No sense in continuing since there are no links to switch to
    }

    if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_ALWAYS) {
        SharedPtr<Link> abLink = getLink(_paths[_abPathIdx].p);
        if (! _paths[_abFailoverQueue.front()].p) {
            log("invalid link. not switching");
            return;
        }

        SharedPtr<Link> abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p);
        if (abLink && ! abLink->primary() && _paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary()) {
            dequeueNextActiveBackupPath(now);
            log("switch back to available primary link %s (select mode: always)", pathToStr(_paths[_abPathIdx].p).c_str());
        }
    }
    if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_BETTER) {
        SharedPtr<Link> abLink = getLink(_paths[_abPathIdx].p);
        if (abLink && ! abLink->primary()) {
            // Active backup has switched to "better" primary link according to re-select policy.
            SharedPtr<Link> abFailoverLink = getLink(_paths[_abFailoverQueue.front()].p);
            if (_paths[_abFailoverQueue.front()].p && abFailoverLink && abFailoverLink->primary() && (_paths[_abFailoverQueue.front()].failoverScore > _paths[_abPathIdx].failoverScore)) {
                dequeueNextActiveBackupPath(now);
                log("switch back to user-defined primary link %s (select mode: better)", pathToStr(_paths[_abPathIdx].p).c_str());
            }
        }
    }
    if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_OPTIMIZE && ! _abFailoverQueue.empty()) {
        /**
         * Implement link negotiation that was previously-decided
         */
        if (_paths[_abFailoverQueue.front()].negotiated) {
            dequeueNextActiveBackupPath(now);
            _lastPathNegotiationCheck = now;
            log("switch negotiated link %s (select mode: optimize)", pathToStr(_paths[_abPathIdx].p).c_str());
        }
        else {
            // Try to find a better path and automatically switch to it -- not too often, though.
            if ((now - _lastActiveBackupPathChange) > ZT_BOND_OPTIMIZE_INTERVAL) {
                if (! _abFailoverQueue.empty()) {
                    int newFScore = _paths[_abFailoverQueue.front()].failoverScore;
                    int prevFScore = _paths[_abPathIdx].failoverScore;
                    // Establish a minimum switch threshold to prevent flapping
                    int failoverScoreDifference = _paths[_abFailoverQueue.front()].failoverScore - _paths[_abPathIdx].failoverScore;
                    int thresholdQuantity = (int)(ZT_BOND_ACTIVE_BACKUP_OPTIMIZE_MIN_THRESHOLD * (float)_paths[_abPathIdx].relativeQuality);
                    if ((failoverScoreDifference > 0) && (failoverScoreDifference > thresholdQuantity)) {
                        SharedPtr<Path> oldPath = _paths[_abPathIdx].p;
                        dequeueNextActiveBackupPath(now);
                        log("switch from %s (score: %d) to better link %s (score: %d) (select mode: optimize)", pathToStr(oldPath).c_str(), prevFScore, pathToStr(_paths[_abPathIdx].p).c_str(), newFScore);
                    }
                }
            }
        }
    }
}

void Bond::initTimers()
{
    _lastFlowExpirationCheck = 0;
    _lastFlowRebalance = 0;
    _lastSentPathNegotiationRequest = 0;
    _lastPathNegotiationCheck = 0;
    _lastPathNegotiationReceived = 0;
    _lastQoSRateCheck = 0;
    _lastAckRateCheck = 0;
    _lastQualityEstimation = 0;
    _lastBondStatusLog = 0;
    _lastSummaryDump = 0;
    _lastActiveBackupPathChange = 0;
    _lastFrame = 0;
    _lastBackgroundTaskCheck = 0;
}

void Bond::setBondParameters(int policy, SharedPtr<Bond> templateBond, bool useTemplate)
{
    // Sanity check for policy

    _defaultPolicy = (_defaultPolicy <= ZT_BOND_POLICY_NONE || _defaultPolicy > ZT_BOND_POLICY_BALANCE_AWARE) ? ZT_BOND_POLICY_NONE : _defaultPolicy;
    _policy = (policy <= ZT_BOND_POLICY_NONE || policy > ZT_BOND_POLICY_BALANCE_AWARE) ? _defaultPolicy : policy;

    // Check if non-leaf to prevent spamming infrastructure
    ZT_PeerRole role;
    if (_peer) {
        role = RR->topology->role(_peer->address());
    }
    _isLeaf = _peer ? (role != ZT_PEER_ROLE_PLANET && role != ZT_PEER_ROLE_MOON) : false;

    // Path negotiation

    _allowPathNegotiation = false;
    _pathNegotiationCutoffCount = 0;
    _localUtility = 0;
    _negotiatedPathIdx = 0;

    // User preferences which may override the default bonding algorithm's behavior

    _userHasSpecifiedPrimaryLink = false;
    _userHasSpecifiedFailoverInstructions = false;
    _userHasSpecifiedLinkCapacities = 0;

    // Bond status

    _numAliveLinks = 0;
    _numTotalLinks = 0;
    _numBondedPaths = 0;

    // General parameters

    _downDelay = 0;
    _upDelay = 0;
    _monitorInterval = 0;

    // balance-aware

    _totalBondUnderload = 0;
    _overheadBytes = 0;

    /**
     * Policy defaults
     */
    _abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
    _abLinkSelectMethod = ZT_BOND_RESELECTION_POLICY_ALWAYS;
    _rrPacketsSentOnCurrLink = 0;
    _rrIdx = 0;
    _packetsPerLink = 64;

    // Sane quality defaults

    _qw[ZT_QOS_LAT_MAX_IDX] = 500.0f;
    _qw[ZT_QOS_PDV_MAX_IDX] = 100.0f;
    _qw[ZT_QOS_PLR_MAX_IDX] = 0.001f;
    _qw[ZT_QOS_PER_MAX_IDX] = 0.0001f;
    _qw[ZT_QOS_LAT_WEIGHT_IDX] = 0.25f;
    _qw[ZT_QOS_PDV_WEIGHT_IDX] = 0.25f;
    _qw[ZT_QOS_PLR_WEIGHT_IDX] = 0.25f;
    _qw[ZT_QOS_PER_WEIGHT_IDX] = 0.25f;

    _failoverInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;

    /* If a user has specified custom parameters for this bonding policy, overlay them onto the defaults */
    if (useTemplate) {
        _policyAlias = templateBond->_policyAlias;
        _policy = templateBond->policy();
        _failoverInterval = templateBond->_failoverInterval >= ZT_BOND_FAILOVER_MIN_INTERVAL ? templateBond->_failoverInterval : ZT_BOND_FAILOVER_MIN_INTERVAL;
        _downDelay = templateBond->_downDelay;
        _upDelay = templateBond->_upDelay;
        _abLinkSelectMethod = templateBond->_abLinkSelectMethod;
        memcpy(_qw, templateBond->_qw, ZT_QOS_PARAMETER_SIZE * sizeof(float));
        debug("user link quality spec = {%6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f}", _qw[0], _qw[1], _qw[2], _qw[3], _qw[4], _qw[5], _qw[6], _qw[7]);
    }

    if (! _isLeaf) {
        _policy = ZT_BOND_POLICY_NONE;
    }

    // Timer geometry

    _monitorInterval = _failoverInterval / ZT_BOND_ECHOS_PER_FAILOVER_INTERVAL;
    _qualityEstimationInterval = _failoverInterval * 2;
    _qosSendInterval = _failoverInterval * 2;
    _ackSendInterval = _failoverInterval * 2;
    _qosCutoffCount = 0;
    _ackCutoffCount = 0;
    _defaultPathRefractoryPeriod = 8000;
}

void Bond::setUserLinkQualitySpec(float weights[], int len)
{
    if (len != ZT_QOS_PARAMETER_SIZE) {
        debug("link quality spec has an invalid number of parameters (%d out of %d), ignoring", len, ZT_QOS_PARAMETER_SIZE);
        return;
    }
    float weightTotal = 0.0;
    for (unsigned int i = 4; i < ZT_QOS_PARAMETER_SIZE; ++i) {
        weightTotal += weights[i];
    }
    if (weightTotal > 0.99 && weightTotal < 1.01) {
        memcpy(_qw, weights, len * sizeof(float));
    }
}

SharedPtr<Link> Bond::getLink(const SharedPtr<Path>& path)
{
    return ! path ? SharedPtr<Link>() : RR->bc->getLinkBySocket(_policyAlias, path->localSocket());
}

std::string Bond::pathToStr(const SharedPtr<Path>& path)
{
#ifdef ZT_TRACE
    if (path) {
        char pathStr[64] = { 0 };
        char fullPathStr[384] = { 0 };
        path->address().toString(pathStr);
        SharedPtr<Link> link = getLink(path);
        if (link) {
            std::string ifnameStr = std::string(link->ifname());
            snprintf(fullPathStr, 384, "%.16" PRIx64 "-%s/%s", path->localSocket(), ifnameStr.c_str(), pathStr);
            return std::string(fullPathStr);
        }
    }
    return "";
#else
    return "";
#endif
}

void Bond::dumpPathStatus(int64_t now, int pathIdx)
{
#ifdef ZT_TRACE
    std::string aliveOrDead = _paths[pathIdx].alive ? std::string("alive") : std::string("dead");
    std::string eligibleOrNot = _paths[pathIdx].eligible ? std::string("eligible") : std::string("ineligible");
    std::string bondedOrNot = _paths[pathIdx].bonded ? std::string("bonded") : std::string("unbonded");
    log("path[%2u] --- %5s (in %7" PRId64 ", out: %7" PRId64 "), %10s, %8s, flows=%-6u lat=%-8.3f pdv=%-7.3f err=%-6.4f loss=%-6.4f qual=%-6.4f --- (%s) spare=%d",
        pathIdx,
        aliveOrDead.c_str(),
        _paths[pathIdx].p->age(now),
        _paths[pathIdx].p->_lastOut == 0 ? static_cast<int64_t>(0) : now - _paths[pathIdx].p->_lastOut,
        eligibleOrNot.c_str(),
        bondedOrNot.c_str(),
        _paths[pathIdx].assignedFlowCount,
        _paths[pathIdx].latency,
        _paths[pathIdx].latencyVariance,
        _paths[pathIdx].packetErrorRatio,
        _paths[pathIdx].packetLossRatio,
        _paths[pathIdx].relativeQuality,
        pathToStr(_paths[pathIdx].p).c_str(),
        _paths[pathIdx].isSpare());
#endif
}

void Bond::dumpInfo(int64_t now, bool force)
{
#ifdef ZT_TRACE
    uint64_t timeSinceLastDump = now - _lastSummaryDump;
    if (! force && timeSinceLastDump < ZT_BOND_STATUS_INTERVAL) {
        return;
    }
    _lastSummaryDump = now;
    float overhead = (_overheadBytes / (timeSinceLastDump / 1000.0f) / 1000.0f);
    _overheadBytes = 0;
    log("bond: ready=%d, bp=%d, fi=%" PRIu64 ", mi=%d, ud=%d, dd=%d, flows=%zu, leaf=%d, overhead=%f KB/s, links=(%d/%d)",
        isReady(),
        _policy,
        _failoverInterval,
        _monitorInterval,
        _upDelay,
        _downDelay,
        _flows.size(),
        _isLeaf,
        overhead,
        _numAliveLinks,
        _numTotalLinks);
    for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
        if (_paths[i].p) {
            dumpPathStatus(now, i);
        }
    }
    log("");
#endif
}

}   // namespace ZeroTier