RRG-Proxmark3/armsrc/Standalone/hf_cardhopper.c
2024-11-20 23:48:14 +01:00

551 lines
17 KiB
C

/*
* hf_cardhopper standalone mode by Sam Haskins
*
* A component of our (me + Trevor Stevado) research on long-range relay
* attacks against 14a-based protocols (as presented at DEF CON '31).
* Works with a CardHopper (recommended) or BlueShark add-on.
*
* If you're reading this, you're clearly a very interesting person---
* do reach out if you get any fun results? [ sam AT loudmouth DOT io ]
* Good luck, and may the odds be ever in your favour!
*
* The companion Android app is available on our gitlab: gitlab.com/loudmouth-security
*
* For more information, see: https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Trevor%20Stevado%20Sam%20Haskins%20-%20Unlocking%20Doors%20from%20Half%20a%20Continent%20Away.pdf
*/
#include <string.h>
#include "appmain.h"
#include "BigBuf.h"
#include "dbprint.h"
#include "fpgaloader.h"
#include "iso14443a.h"
#include "protocols.h"
#include "proxmark3_arm.h"
#include "standalone.h"
#include "ticks.h"
#include "util.h"
#include "usart.h"
#include "cmd.h"
#include "usb_cdc.h"
#ifdef CARDHOPPER_USB
#define cardhopper_write usb_write
#define cardhopper_read usb_read_ng
bool cardhopper_data_available(void);
bool cardhopper_data_available(void) {
return usb_read_ng_has_buffered_data() || usb_poll_validate_length();
}
#else
#define cardhopper_write usart_writebuffer_sync
#define cardhopper_read usart_read_ng
#define cardhopper_data_available usart_rxdata_available
#endif
void ModInfo(void) {
DbpString(" HF - Long-range relay 14a over serial<->IP - a.k.a. CardHopper (Sam Haskins)");
}
typedef struct PACKED {
uint8_t len;
uint8_t dat[255];
} packet_t;
// Magic numbers
static const uint8_t magicREAD[4] = "READ";
static const uint8_t magicCARD[4] = "CARD";
static const uint8_t magicEND [4] = "\xff" "END";
static const uint8_t magicRSRT[7] = "RESTART";
static const uint8_t magicERR [4] = "\xff" "ERR";
static uint8_t magicACK [1] = "\xfe"; // is constant, but must be passed to API that doesn't like that
// Forward declarations
static void become_reader(void);
static void select_card(void);
static void become_card(void);
static void prepare_emulation(uint8_t *, uint16_t *, uint8_t *, packet_t *);
static void cook_ats(packet_t *, uint8_t, uint8_t);
static bool try_use_canned_response(const uint8_t *, int, tag_response_info_t *);
static void reply_with_packet(packet_t *);
static void read_packet(packet_t *);
static void write_packet(packet_t *);
static bool GetIso14443aCommandFromReaderInterruptible(uint8_t *, uint16_t, uint8_t *, int *);
void RunMod(void) {
// Ensure debug logs don't polute stream
#ifdef CARDHOPPER_USB
g_reply_via_usb = false;
g_reply_via_fpc = true;
#else
g_reply_via_usb = true;
g_reply_via_fpc = false;
#endif
StandAloneMode();
DbpString(_CYAN_("[@]") " CardHopper has started - waiting for mode");
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
clear_trace();
set_tracing(true);
// Indicate we are alive and in CardHopper
LEDsoff();
LED_A_ON();
LED_D_ON();
while (1) {
WDT_HIT();
packet_t modeRx = { 0 };
read_packet(&modeRx);
if (BUTTON_PRESS()) {
DbpString(_CYAN_("[@]") " Button pressed - Breaking from mode loop");
break;
}
if (modeRx.len == 0) {
DbpString(_CYAN_("[@]") " Zero length message");
continue;
}
if (modeRx.len == sizeof(magicREAD) && memcmp(magicREAD, modeRx.dat, sizeof(magicREAD)) == 0) {
DbpString(_CYAN_("[@]") " I am a READER. I talk to a CARD.");
become_reader();
} else if (modeRx.len == sizeof(magicCARD) && memcmp(magicCARD, modeRx.dat, sizeof(magicCARD)) == 0) {
DbpString(_CYAN_("[@]") " I am a CARD. I talk to a READER.");
become_card();
} else if (modeRx.len == sizeof(magicEND) && memcmp(magicEND, modeRx.dat, sizeof(magicEND)) == 0) {
break;
} else if (modeRx.len == sizeof(magicRSRT) && memcmp(magicRSRT, modeRx.dat, sizeof(magicRSRT)) == 0) {
DbpString(_CYAN_("[@]") " Got RESET but already reset.");
continue;
} else {
DbpString(_YELLOW_("[!]") " unknown mode!");
Dbhexdump(modeRx.len, modeRx.dat, true);
}
}
DbpString(_CYAN_("[@]") " exiting ...");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
static void become_reader(void) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
select_card(); // also sends UID, ATS
DbpString(_CYAN_("[@]") " entering reader main loop ...");
packet_t packet = { 0 };
packet_t *rx = &packet;
packet_t *tx = &packet;
uint8_t toCard[256] = { 0 };
uint8_t parity[MAX_PARITY_SIZE] = { 0 };
while (1) {
WDT_HIT();
read_packet(rx);
if (rx->len == sizeof(magicRSRT) && memcmp(magicRSRT, rx->dat, sizeof(magicRSRT)) == 0) break;
if (BUTTON_PRESS()) {
DbpString(_CYAN_("[@]") " Button pressed - Breaking from reader loop");
break;
}
if (rx->dat[0] == ISO14443A_CMD_RATS && rx->len == 4) {
// got RATS from reader, reset the card
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(40);
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
// re-select the card without RATS to allow replaying the real RATS
int ret = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (ret && ret != 1) {
Dbprintf(_RED_("[!]") " Error selecting card: %d", ret);
continue;
}
}
memcpy(toCard, rx->dat, rx->len);
AddCrc14A(toCard, rx->len);
ReaderTransmit(toCard, rx->len + 2, NULL);
tx->len = ReaderReceive(tx->dat, sizeof(tx->dat), parity);
if (tx->len == 0) {
tx->len = sizeof(magicERR);
memcpy(tx->dat, magicERR, sizeof(magicERR));
} else tx->len -= 2; // cut off the CRC
write_packet(tx);
}
}
static void select_card(void) {
iso14a_card_select_t card = { 0 };
while (1) {
WDT_HIT();
int ret = iso14443a_select_card(NULL, &card, NULL, true, 0, false);
if (ret && ret != 1)
Dbprintf(_RED_("[!]") " Error selecting card: %d", ret);
if (ret == 1) break;
SpinDelay(20);
}
DbpString(_CYAN_("[@]") " UID:");
Dbhexdump(card.uidlen, card.uid, false);
DbpString(_CYAN_("[@]") " ATS:");
Dbhexdump(card.ats_len - 2 /* no CRC */, card.ats, false);
packet_t tx = { 0 };
tx.len = card.uidlen;
memcpy(tx.dat, card.uid, tx.len);
write_packet(&tx);
tx.len = card.ats_len - 2;
memcpy(tx.dat, card.ats, tx.len);
write_packet(&tx);
}
static void become_card(void) {
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
uint8_t tagType;
uint16_t flags = 0;
uint8_t data[PM3_CMD_DATA_SIZE] = { 0 };
packet_t ats = { 0 };
prepare_emulation(&tagType, &flags, data, &ats);
tag_response_info_t *canned;
uint32_t cuid;
uint32_t counters[3] = { 0 };
uint8_t tearings[3] = { 0xbd, 0xbd, 0xbd };
uint8_t pages;
SimulateIso14443aInit(tagType, flags, data, NULL, 0, &canned, &cuid, counters, tearings, &pages);
DbpString(_CYAN_("[@]") " Setup done - entering emulation loop");
int fromReaderLen;
uint8_t fromReaderDat[256] = { 0 };
uint8_t parity[MAX_PARITY_SIZE] = { 0 };
packet_t packet = { 0 };
packet_t *tx = &packet;
packet_t *rx = &packet;
while (1) {
WDT_HIT();
if (!GetIso14443aCommandFromReaderInterruptible(fromReaderDat, sizeof(fromReaderDat), parity, &fromReaderLen)) {
if (cardhopper_data_available()) {
read_packet(rx);
if (memcmp(magicRSRT, rx->dat, sizeof(magicRSRT)) == 0) {
DbpString(_CYAN_("[@]") " Breaking from emulation loop");
break;
}
} else if (BUTTON_PRESS()) {
DbpString(_CYAN_("[@]") " Button pressed - Breaking from emulation loop");
break;
}
continue;
}
// Option 1: Use a canned response
if (try_use_canned_response(fromReaderDat, fromReaderLen, canned)) continue;
// Option 2: Reply with our cooked ATS
bool no_reply = false;
if (fromReaderDat[0] == ISO14443A_CMD_RATS && fromReaderLen == 4) {
reply_with_packet(&ats);
// fallthrough to still send the RATS to the card so it can learn the CID
// but don't send the reply since we've already sent our cooked ATS
no_reply = true;
}
// Option 3: Relay the message
tx->len = fromReaderLen - 2; // cut off the crc
memcpy(tx->dat, fromReaderDat, tx->len);
write_packet(tx);
read_packet(rx);
if (!no_reply && rx->len > 0) {
reply_with_packet(rx);
}
}
}
static void prepare_emulation(uint8_t *tagType, uint16_t *flags, uint8_t *data, packet_t *ats) {
packet_t tagTypeRx = { 0 };
read_packet(&tagTypeRx);
packet_t timeModeRx = { 0 };
read_packet(&timeModeRx);
packet_t uidRx = { 0 };
read_packet(&uidRx);
read_packet(ats);
*tagType = tagTypeRx.dat[0];
Dbprintf(_CYAN_("[@]") " Using tag type: %hhu", *tagType);
DbpString(_CYAN_("[@]") " Time control parameters:");
Dbhexdump(timeModeRx.len, timeModeRx.dat, false);
uint8_t fwi = timeModeRx.dat[0] & 0x0f;
uint8_t sfgi = timeModeRx.dat[1] & 0x0f;
Dbprintf(_CYAN_("[@]") " Parsed as fwi = %hhu, sfgi = %hhu", fwi, sfgi);
if (fwi == 0xf) {
DbpString(_YELLOW_("[!]") " Refusing to use 15 as FWI - will use 14");
fwi = 0xe;
}
if (sfgi == 0xf) {
DbpString(_YELLOW_("[!]") " Refusing to use 15 as SFGI - will use 14");
sfgi = 0xe;
}
memcpy(data, uidRx.dat, uidRx.len);
FLAG_SET_UID_IN_DATA(*flags, uidRx.len);
DbpString(_CYAN_("[@]") " UID:");
Dbhexdump(uidRx.len, data, false);
Dbprintf(_CYAN_("[@]") " Flags: %hu", *flags);
DbpString(_CYAN_("[@]") " Original ATS:");
Dbhexdump(ats->len, ats->dat, false);
cook_ats(ats, fwi, sfgi);
DbpString(_CYAN_("[@]") " Cooked ATS:");
Dbhexdump(ats->len, ats->dat, false);
}
static void cook_ats(packet_t *ats, uint8_t fwi, uint8_t sfgi) {
if (ats->len != ats->dat[0]) {
DbpString(_RED_("[!]") " Malformed ATS - unable to cook; things may go wrong!");
return;
}
uint8_t t0 = 0x70; // TA, TB, and TC transmitted, FSCI nibble set later
uint8_t ta = 0x80; // only 106kbps rate supported, and must be same in both directions - PM3 doesn't support any other rates
uint8_t tb = (fwi << 4) | sfgi; // cooked value
uint8_t tc = 0;
uint8_t historical_len = 0;
uint8_t *historical_bytes;
if (ats->len > 1) {
// T0 byte exists when ats length > 1
uint8_t orig_t0 = ats->dat[1];
// Update FSCI in T0 from the received ATS
t0 |= orig_t0 & 0x0F;
uint8_t len = ats->len - 2;
uint8_t *orig_ats_ptr = &ats->dat[2];
if (orig_t0 & 0x10) {
// TA present
if (len < 1) {
DbpString(_RED_("[!]") " Malformed ATS - unable to cook; things may go wrong!");
return;
}
orig_ats_ptr++;
len--;
}
if (orig_t0 & 0x20) {
// TB present
if (len < 1) {
DbpString(_RED_("[!]") " Malformed ATS - unable to cook; things may go wrong!");
return;
}
orig_ats_ptr++;
len--;
}
if (orig_t0 & 0x40) {
// TC present, extract protocol parameters
if (len < 1) {
DbpString(_RED_("[!]") " Malformed ATS - unable to cook; things may go wrong!");
return;
}
tc = *orig_ats_ptr;
orig_ats_ptr++;
len--;
}
historical_bytes = orig_ats_ptr;
historical_len = len;
} else {
// T0 byte missing, update FSCI in T0 to the default value of 2
t0 |= 0x02;
}
packet_t cooked_ats = { 0 };
cooked_ats.len = 5 + historical_len;
cooked_ats.dat[0] = cooked_ats.len;
cooked_ats.dat[1] = t0;
cooked_ats.dat[2] = ta;
cooked_ats.dat[3] = tb;
cooked_ats.dat[4] = tc;
if (historical_len > 0) {
memcpy(cooked_ats.dat + 5, historical_bytes, historical_len);
}
memcpy(ats, &cooked_ats, sizeof(packet_t));
}
static bool try_use_canned_response(const uint8_t *dat, int len, tag_response_info_t *canned) {
if ((dat[0] == ISO14443A_CMD_REQA || dat[0] == ISO14443A_CMD_WUPA) && len == 1) {
EmSendPrecompiledCmd(canned + RESP_INDEX_ATQA);
return true;
}
if (dat[1] == 0x20 && len == 2) {
if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {
EmSendPrecompiledCmd(canned + RESP_INDEX_UIDC1);
return true;
} else if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) {
EmSendPrecompiledCmd(canned + RESP_INDEX_UIDC2);
return true;
} else if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3) {
EmSendPrecompiledCmd(canned + RESP_INDEX_UIDC3);
return true;
}
}
if (dat[1] == 0x70 && len == 9) {
if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {
EmSendPrecompiledCmd(canned + RESP_INDEX_SAKC1);
return true;
} else if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) {
EmSendPrecompiledCmd(canned + RESP_INDEX_SAKC2);
return true;
} else if (dat[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3) {
EmSendPrecompiledCmd(canned + RESP_INDEX_SAKC3);
return true;
}
}
// high nibble of PPS is PPS CMD, low nibble of PPS is CID
if ((dat[0] & 0xF0) == ISO14443A_CMD_PPS) {
EmSendPrecompiledCmd(canned + RESP_INDEX_PPS);
return true;
}
// No response is expected to these 14a commands
if ((dat[0] & 0xF7) == ISO14443A_CMD_WTX) return true; // bit 0x08 indicates CID following
if (dat[0] == ISO14443A_CMD_HALT && len == 4) return true;
// Ignore Apple ECP2 polling
if (dat[0] == ECP_HEADER) return true;
return false;
}
static uint8_t g_responseBuffer [512 ] = { 0 };
static uint8_t g_modulationBuffer[1024] = { 0 };
static void reply_with_packet(packet_t *packet) {
tag_response_info_t response = { 0 };
response.response = g_responseBuffer;
response.modulation = g_modulationBuffer;
memcpy(response.response, packet->dat, packet->len);
AddCrc14A(response.response, packet->len);
response.response_n = packet->len + 2;
prepare_tag_modulation(&response, sizeof(g_modulationBuffer));
EmSendPrecompiledCmd(&response);
}
static void read_packet(packet_t *packet) {
while (!cardhopper_data_available()) {
WDT_HIT();
SpinDelayUs(100);
if (BUTTON_PRESS()) {
DbpString(_CYAN_("[@]") " Button pressed while waiting for packet - aborting");
return;
}
}
cardhopper_read((uint8_t *) &packet->len, 1);
uint32_t dataReceived = 0;
while (dataReceived != packet->len) {
while (!cardhopper_data_available()) {
WDT_HIT();
if (BUTTON_PRESS()) {
DbpString(_CYAN_("[@]") " Button pressed while reading packet - aborting");
return;
}
}
dataReceived += cardhopper_read(packet->dat + dataReceived, packet->len - dataReceived);
if (packet->len == 0x50 && dataReceived >= sizeof(PacketResponseNGPreamble) && packet->dat[0] == 0x4D && packet->dat[1] == 0x33 && packet->dat[2] == 0x61) {
// PM3 NG packet magic
DbpString(_CYAN_("[@]") " PM3 NG packet received - ignoring");
// clear any remaining buffered data
while (cardhopper_data_available()) {
cardhopper_read(packet->dat, 255);
}
packet->len = 0;
return;
}
}
cardhopper_write(magicACK, sizeof(magicACK));
}
static void write_packet(packet_t *packet) {
cardhopper_write((uint8_t *) packet, packet->len + 1);
}
static bool GetIso14443aCommandFromReaderInterruptible(uint8_t *received, uint16_t received_max_len, uint8_t *par, int *len) {
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
Uart14aInit(received, received_max_len, par);
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
(void)b;
uint8_t flip = 0;
uint16_t checker = 4000;
for (;;) {
WDT_HIT();
if (flip == 3) {
if (cardhopper_data_available() || BUTTON_PRESS())
return false;
flip = 0;
}
if (checker-- == 0) {
flip++;
checker = 4000;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if (MillerDecoding(b, 0)) {
*len = GetUart14a()->len;
return true;
}
}
}
return false;
}