DeepFaceLive/modelhub/torch/S3FD/S3FD.py
2021-11-07 10:03:15 +04:00

266 lines
10 KiB
Python

import operator
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from xlib import math as lib_math
from xlib.file import SplittedFile
from xlib.image import ImageProcessor
from xlib.torch import TorchDeviceInfo, get_cpu_device_info
class S3FD:
def __init__(self, device_info : TorchDeviceInfo = None ):
if device_info is None:
device_info = get_cpu_device_info()
self.device_info = device_info
path = Path(__file__).parent / 'S3FD.pth'
SplittedFile.merge(path, delete_parts=False)
net = self.net = S3FDNet()
net.load_state_dict( torch.load(str(path) ))
net.eval()
if not device_info.is_cpu():
net.cuda(device_info.get_index())
def extract(self, img : np.ndarray, fixed_window, min_face_size=40):
"""
"""
ip = ImageProcessor(img)
if fixed_window != 0:
fixed_window = max(64, max(1, fixed_window // 32) * 32 )
img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False)
else:
ip.pad_to_next_divisor(64, 64)
img_scale = 1.0
img = ip.ch(3).as_float32().apply( lambda img: img - [104,117,123]).get_image('NCHW')
tensor = torch.from_numpy(img)
if not self.device_info.is_cpu():
tensor = tensor.cuda(self.device_info.get_index())
batches_bbox = [x.data.cpu().numpy() for x in self.net(tensor)]
faces_per_batch = []
for batch in range(img.shape[0]):
bbox = self.refine( [ x[batch] for x in batches_bbox ] )
faces = []
for l,t,r,b,c in bbox:
if img_scale != 1.0:
l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale
bt = b-t
if min(r-l,bt) < min_face_size:
continue
b += bt*0.1
faces.append ( (l,t,r,b) )
#sort by largest area first
faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in faces ]
faces = sorted(faces, key=operator.itemgetter(1), reverse=True )
faces = [ x[0] for x in faces]
faces_per_batch.append(faces)
return faces_per_batch
def refine(self, olist):
bboxlist = []
variances = [0.1, 0.2]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
stride = 2**(i + 2) # 4,8,16,32,64,128
for hindex, windex in [*zip(*np.where(ocls[1, :, :] > 0.05))]:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[1, hindex, windex]
loc = np.ascontiguousarray(oreg[:, hindex, windex]).reshape((1, 4))
priors = np.array([[axc, ayc, stride * 4, stride * 4]])
bbox = np.concatenate((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), 1)
bbox[:, :2] -= bbox[:, 2:] / 2
bbox[:, 2:] += bbox[:, :2]
x1, y1, x2, y2 = bbox[0]
bboxlist.append([x1, y1, x2, y2, score])
if len(bboxlist) != 0:
bboxlist = np.array(bboxlist)
bboxlist = bboxlist[ lib_math.nms(bboxlist[:,0], bboxlist[:,1], bboxlist[:,2], bboxlist[:,3], bboxlist[:,4], 0.3), : ]
bboxlist = [x for x in bboxlist if x[-1] >= 0.5]
return bboxlist
@staticmethod
def save_as_onnx(onnx_filepath):
s3fd = S3FD()
torch.onnx.export(s3fd.net,
torch.from_numpy( np.zeros( (1,3,640,640), dtype=np.float32)),
str(onnx_filepath),
verbose=True,
training=torch.onnx.TrainingMode.EVAL,
opset_version=9,
do_constant_folding=True,
input_names=['in'],
output_names=['cls1', 'reg1', 'cls2', 'reg2', 'cls3', 'reg3', 'cls4', 'reg4', 'cls5', 'reg5', 'cls6', 'reg6'],
dynamic_axes={'in' : {0:'batch_size',2:'height',3:'width'},
'cls1' : {2:'height',3:'width'},
'reg1' : {2:'height',3:'width'},
'cls2' : {2:'height',3:'width'},
'reg2' : {2:'height',3:'width'},
'cls3' : {2:'height',3:'width'},
'reg3' : {2:'height',3:'width'},
'cls4' : {2:'height',3:'width'},
'reg4' : {2:'height',3:'width'},
'cls5' : {2:'height',3:'width'},
'reg5' : {2:'height',3:'width'},
'cls6' : {2:'height',3:'width'},
'reg6' : {2:'height',3:'width'},
},
)
class L2Norm(nn.Module):
def __init__(self, n_channels, scale=1.0):
super().__init__()
self.n_channels = n_channels
self.scale = scale
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.weight.data *= 0.0
self.weight.data += self.scale
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
x = x / norm * self.weight.view(1, -1, 1, 1)
return x
class S3FDNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv3_3_norm = L2Norm(256, scale=10)
self.conv4_3_norm = L2Norm(512, scale=8)
self.conv5_3_norm = L2Norm(512, scale=5)
self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
def forward(self, x):
h = F.relu(self.conv1_1(x))
h = F.relu(self.conv1_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv2_1(h))
h = F.relu(self.conv2_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv3_1(h))
h = F.relu(self.conv3_2(h))
h = F.relu(self.conv3_3(h))
f3_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv4_1(h))
h = F.relu(self.conv4_2(h))
h = F.relu(self.conv4_3(h))
f4_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv5_1(h))
h = F.relu(self.conv5_2(h))
h = F.relu(self.conv5_3(h))
f5_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.fc6(h))
h = F.relu(self.fc7(h))
ffc7 = h
h = F.relu(self.conv6_1(h))
h = F.relu(self.conv6_2(h))
f6_2 = h
h = F.relu(self.conv7_1(h))
h = F.relu(self.conv7_2(h))
f7_2 = h
f3_3 = self.conv3_3_norm(f3_3)
f4_3 = self.conv4_3_norm(f4_3)
f5_3 = self.conv5_3_norm(f5_3)
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
cls2 = self.conv4_3_norm_mbox_conf(f4_3)
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
cls3 = self.conv5_3_norm_mbox_conf(f5_3)
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
cls4 = self.fc7_mbox_conf(ffc7)
reg4 = self.fc7_mbox_loc(ffc7)
cls5 = self.conv6_2_mbox_conf(f6_2)
reg5 = self.conv6_2_mbox_loc(f6_2)
cls6 = self.conv7_2_mbox_conf(f7_2)
reg6 = self.conv7_2_mbox_loc(f7_2)
# max-out background label
chunk = torch.chunk(cls1, 4, 1)
bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
cls1 = torch.cat ([bmax,chunk[3]], dim=1)
cls1, cls2, cls3, cls4, cls5, cls6 = [ F.softmax(x, dim=1) for x in [cls1, cls2, cls3, cls4, cls5, cls6] ]
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]