DeepFaceLab/mainscripts/Extractor.py

846 lines
38 KiB
Python

import traceback
import math
import multiprocessing
import operator
import os
import shutil
import sys
import time
from pathlib import Path
import cv2
import numpy as np
from numpy import linalg as npla
import facelib
from core import imagelib
from core import mathlib
from facelib import FaceType, LandmarksProcessor
from core.interact import interact as io
from core.joblib import Subprocessor
from core.leras import nn
from core import pathex
from core.cv2ex import *
from DFLIMG import *
DEBUG = False
class ExtractSubprocessor(Subprocessor):
class Data(object):
def __init__(self, filepath=None, rects=None, landmarks = None, landmarks_accurate=True, manual=False, force_output_path=None, final_output_files = None):
self.filepath = filepath
self.rects = rects or []
self.rects_rotation = 0
self.landmarks_accurate = landmarks_accurate
self.manual = manual
self.landmarks = landmarks or []
self.force_output_path = force_output_path
self.final_output_files = final_output_files or []
self.faces_detected = 0
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.jpeg_quality = client_dict['jpeg_quality']
self.face_type = client_dict['face_type']
self.max_faces_from_image = client_dict['max_faces_from_image']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.final_output_path = client_dict['final_output_path']
self.output_debug_path = client_dict['output_debug_path']
#transfer and set stdin in order to work code.interact in debug subprocess
stdin_fd = client_dict['stdin_fd']
if stdin_fd is not None and DEBUG:
sys.stdin = os.fdopen(stdin_fd)
if self.cpu_only:
device_config = nn.DeviceConfig.CPU()
place_model_on_cpu = True
else:
device_config = nn.DeviceConfig.GPUIndexes ([self.device_idx])
place_model_on_cpu = device_config.devices[0].total_mem_gb < 4
if self.type == 'all' or 'rects' in self.type or 'landmarks' in self.type:
nn.initialize (device_config)
self.log_info (f"Running on {client_dict['device_name'] }")
if self.type == 'all' or self.type == 'rects-s3fd' or 'landmarks' in self.type:
self.rects_extractor = facelib.S3FDExtractor(place_model_on_cpu=place_model_on_cpu)
if self.type == 'all' or 'landmarks' in self.type:
# for head type, extract "3D landmarks"
self.landmarks_extractor = facelib.FANExtractor(landmarks_3D=self.face_type >= FaceType.HEAD,
place_model_on_cpu=place_model_on_cpu)
self.cached_image = (None, None)
#override
def process_data(self, data):
if 'landmarks' in self.type and len(data.rects) == 0:
return data
filepath = data.filepath
cached_filepath, image = self.cached_image
if cached_filepath != filepath:
image = cv2_imread( filepath )
if image is None:
self.log_err (f'Failed to open {filepath}, reason: cv2_imread() fail.')
return data
image = imagelib.normalize_channels(image, 3)
image = imagelib.cut_odd_image(image)
self.cached_image = ( filepath, image )
h, w, c = image.shape
if 'rects' in self.type or self.type == 'all':
data = ExtractSubprocessor.Cli.rects_stage (data=data,
image=image,
max_faces_from_image=self.max_faces_from_image,
rects_extractor=self.rects_extractor,
)
if 'landmarks' in self.type or self.type == 'all':
data = ExtractSubprocessor.Cli.landmarks_stage (data=data,
image=image,
landmarks_extractor=self.landmarks_extractor,
rects_extractor=self.rects_extractor,
)
if self.type == 'final' or self.type == 'all':
data = ExtractSubprocessor.Cli.final_stage(data=data,
image=image,
face_type=self.face_type,
image_size=self.image_size,
jpeg_quality=self.jpeg_quality,
output_debug_path=self.output_debug_path,
final_output_path=self.final_output_path,
)
return data
@staticmethod
def rects_stage(data,
image,
max_faces_from_image,
rects_extractor,
):
h,w,c = image.shape
if min(h,w) < 128:
# Image is too small
data.rects = []
else:
for rot in ([0, 90, 270, 180]):
if rot == 0:
rotated_image = image
elif rot == 90:
rotated_image = image.swapaxes( 0,1 )[:,::-1,:]
elif rot == 180:
rotated_image = image[::-1,::-1,:]
elif rot == 270:
rotated_image = image.swapaxes( 0,1 )[::-1,:,:]
rects = data.rects = rects_extractor.extract (rotated_image, is_bgr=True)
if len(rects) != 0:
data.rects_rotation = rot
break
if max_faces_from_image is not None and \
max_faces_from_image > 0 and \
len(data.rects) > 0:
data.rects = data.rects[0:max_faces_from_image]
return data
@staticmethod
def landmarks_stage(data,
image,
landmarks_extractor,
rects_extractor,
):
h, w, ch = image.shape
if data.rects_rotation == 0:
rotated_image = image
elif data.rects_rotation == 90:
rotated_image = image.swapaxes( 0,1 )[:,::-1,:]
elif data.rects_rotation == 180:
rotated_image = image[::-1,::-1,:]
elif data.rects_rotation == 270:
rotated_image = image.swapaxes( 0,1 )[::-1,:,:]
data.landmarks = landmarks_extractor.extract (rotated_image, data.rects, rects_extractor if (data.landmarks_accurate) else None, is_bgr=True)
if data.rects_rotation != 0:
for i, (rect, lmrks) in enumerate(zip(data.rects, data.landmarks)):
new_rect, new_lmrks = rect, lmrks
(l,t,r,b) = rect
if data.rects_rotation == 90:
new_rect = ( t, h-l, b, h-r)
if lmrks is not None:
new_lmrks = lmrks[:,::-1].copy()
new_lmrks[:,1] = h - new_lmrks[:,1]
elif data.rects_rotation == 180:
if lmrks is not None:
new_rect = ( w-l, h-t, w-r, h-b)
new_lmrks = lmrks.copy()
new_lmrks[:,0] = w - new_lmrks[:,0]
new_lmrks[:,1] = h - new_lmrks[:,1]
elif data.rects_rotation == 270:
new_rect = ( w-b, l, w-t, r )
if lmrks is not None:
new_lmrks = lmrks[:,::-1].copy()
new_lmrks[:,0] = w - new_lmrks[:,0]
data.rects[i], data.landmarks[i] = new_rect, new_lmrks
return data
@staticmethod
def final_stage(data,
image,
face_type,
image_size,
jpeg_quality,
output_debug_path=None,
final_output_path=None,
):
data.final_output_files = []
filepath = data.filepath
rects = data.rects
landmarks = data.landmarks
if output_debug_path is not None:
debug_image = image.copy()
face_idx = 0
for rect, image_landmarks in zip( rects, landmarks ):
if image_landmarks is None:
continue
rect = np.array(rect)
if face_type == FaceType.MARK_ONLY:
image_to_face_mat = None
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, image_size, face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (image_size, image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
landmarks_bbox = LandmarksProcessor.transform_points ( [ (0,0), (0,image_size-1), (image_size-1, image_size-1), (image_size-1,0) ], image_to_face_mat, True)
rect_area = mathlib.polygon_area(np.array(rect[[0,2,2,0]]).astype(np.float32), np.array(rect[[1,1,3,3]]).astype(np.float32))
landmarks_area = mathlib.polygon_area(landmarks_bbox[:,0].astype(np.float32), landmarks_bbox[:,1].astype(np.float32) )
if not data.manual and face_type <= FaceType.FULL_NO_ALIGN and landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
if output_debug_path is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, face_type, image_size, transparent_mask=True)
output_path = final_output_path
if data.force_output_path is not None:
output_path = data.force_output_path
output_filepath = output_path / f"{filepath.stem}_{face_idx}.jpg"
cv2_imwrite(output_filepath, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality ] )
dflimg = DFLJPG.load(output_filepath)
dflimg.set_face_type(FaceType.toString(face_type))
dflimg.set_landmarks(face_image_landmarks.tolist())
dflimg.set_source_filename(filepath.name)
dflimg.set_source_rect(rect)
dflimg.set_source_landmarks(image_landmarks.tolist())
dflimg.set_image_to_face_mat(image_to_face_mat)
dflimg.save()
data.final_output_files.append (output_filepath)
face_idx += 1
data.faces_detected = face_idx
if output_debug_path is not None:
cv2_imwrite( output_debug_path / (filepath.stem+'.jpg'), debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
return data
#overridable
def get_data_name (self, data):
#return string identificator of your data
return data.filepath
@staticmethod
def get_devices_for_config (type, device_config):
devices = device_config.devices
cpu_only = len(devices) == 0
if 'rects' in type or \
'landmarks' in type or \
'all' in type:
if not cpu_only:
if type == 'landmarks-manual':
devices = [devices.get_best_device()]
result = []
for device in devices:
count = 1
if count == 1:
result += [ (device.index, 'GPU', device.name, device.total_mem_gb) ]
else:
for i in range(count):
result += [ (device.index, 'GPU', f"{device.name} #{i}", device.total_mem_gb) ]
return result
else:
if type == 'landmarks-manual':
return [ (0, 'CPU', 'CPU', 0 ) ]
else:
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
elif type == 'final':
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]
def __init__(self, input_data, type, image_size=None, jpeg_quality=None, face_type=None, output_debug_path=None, manual_window_size=0, max_faces_from_image=0, final_output_path=None, device_config=None):
if type == 'landmarks-manual':
for x in input_data:
x.manual = True
self.input_data = input_data
self.type = type
self.image_size = image_size
self.jpeg_quality = jpeg_quality
self.face_type = face_type
self.output_debug_path = output_debug_path
self.final_output_path = final_output_path
self.manual_window_size = manual_window_size
self.max_faces_from_image = max_faces_from_image
self.result = []
self.devices = ExtractSubprocessor.get_devices_for_config(self.type, device_config)
super().__init__('Extractor', ExtractSubprocessor.Cli,
999999 if type == 'landmarks-manual' or DEBUG else 120)
#override
def on_clients_initialized(self):
if self.type == 'landmarks-manual':
self.wnd_name = 'Manual pass'
io.named_window(self.wnd_name)
io.capture_mouse(self.wnd_name)
io.capture_keys(self.wnd_name)
self.cache_original_image = (None, None)
self.cache_image = (None, None)
self.cache_text_lines_img = (None, None)
self.hide_help = False
self.landmarks_accurate = True
self.force_landmarks = False
self.landmarks = None
self.x = 0
self.y = 0
self.rect_size = 100
self.rect_locked = False
self.extract_needed = True
self.image = None
self.image_filepath = None
io.progress_bar (None, len (self.input_data))
#override
def on_clients_finalized(self):
if self.type == 'landmarks-manual':
io.destroy_all_windows()
io.progress_bar_close()
#override
def process_info_generator(self):
base_dict = {'type' : self.type,
'image_size': self.image_size,
'jpeg_quality' : self.jpeg_quality,
'face_type': self.face_type,
'max_faces_from_image':self.max_faces_from_image,
'output_debug_path': self.output_debug_path,
'final_output_path': self.final_output_path,
'stdin_fd': sys.stdin.fileno() }
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name
client_dict['device_type'] = device_type
yield client_dict['device_name'], {}, client_dict
#override
def get_data(self, host_dict):
if self.type == 'landmarks-manual':
need_remark_face = False
while len (self.input_data) > 0:
data = self.input_data[0]
filepath, data_rects, data_landmarks = data.filepath, data.rects, data.landmarks
is_frame_done = False
if self.image_filepath != filepath:
self.image_filepath = filepath
if self.cache_original_image[0] == filepath:
self.original_image = self.cache_original_image[1]
else:
self.original_image = imagelib.normalize_channels( cv2_imread( filepath ), 3 )
self.cache_original_image = (filepath, self.original_image )
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
if self.cache_image[0] == (h,w,c) + (self.view_scale,filepath):
self.image = self.cache_image[1]
else:
self.image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
self.cache_image = ( (h,w,c) + (self.view_scale,filepath), self.image )
(h,w,c) = self.image.shape
sh = (0,0, w, min(100, h) )
if self.cache_text_lines_img[0] == sh:
self.text_lines_img = self.cache_text_lines_img[1]
else:
self.text_lines_img = (imagelib.get_draw_text_lines ( self.image, sh,
[ '[L Mouse click] - lock/unlock selection. [Mouse wheel] - change rect',
'[R Mouse Click] - manual face rectangle',
'[Enter] / [Space] - confirm / skip frame',
'[,] [.]- prev frame, next frame. [Q] - skip remaining frames',
'[a] - accuracy on/off (more fps)',
'[h] - hide this help'
], (1, 1, 1) )*255).astype(np.uint8)
self.cache_text_lines_img = (sh, self.text_lines_img)
if need_remark_face: # need remark image from input data that already has a marked face?
need_remark_face = False
if len(data_rects) != 0: # If there was already a face then lock the rectangle to it until the mouse is clicked
self.rect = data_rects.pop()
self.landmarks = data_landmarks.pop()
data_rects.clear()
data_landmarks.clear()
self.rect_locked = True
self.rect_size = ( self.rect[2] - self.rect[0] ) / 2
self.x = ( self.rect[0] + self.rect[2] ) / 2
self.y = ( self.rect[1] + self.rect[3] ) / 2
self.redraw()
if len(data_rects) == 0:
(h,w,c) = self.image.shape
while True:
io.process_messages(0.0001)
if not self.force_landmarks:
new_x = self.x
new_y = self.y
new_rect_size = self.rect_size
mouse_events = io.get_mouse_events(self.wnd_name)
for ev in mouse_events:
(x, y, ev, flags) = ev
if ev == io.EVENT_MOUSEWHEEL and not self.rect_locked:
mod = 1 if flags > 0 else -1
diff = 1 if new_rect_size <= 40 else np.clip(new_rect_size / 10, 1, 10)
new_rect_size = max (5, new_rect_size + diff*mod)
elif ev == io.EVENT_LBUTTONDOWN:
if self.force_landmarks:
self.x = new_x
self.y = new_y
self.force_landmarks = False
self.rect_locked = True
self.redraw()
else:
self.rect_locked = not self.rect_locked
self.extract_needed = True
elif ev == io.EVENT_RBUTTONDOWN:
self.force_landmarks = not self.force_landmarks
if self.force_landmarks:
self.rect_locked = False
elif not self.rect_locked:
new_x = np.clip (x, 0, w-1) / self.view_scale
new_y = np.clip (y, 0, h-1) / self.view_scale
key_events = io.get_key_events(self.wnd_name)
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
if key == ord('\r') or key == ord('\n'):
#confirm frame
is_frame_done = True
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
break
elif key == ord(' '):
#confirm skip frame
is_frame_done = True
break
elif key == ord(',') and len(self.result) > 0:
#go prev frame
if self.rect_locked:
self.rect_locked = False
# Only save the face if the rect is still locked
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
self.input_data.insert(0, self.result.pop() )
io.progress_bar_inc(-1)
need_remark_face = True
break
elif key == ord('.'):
#go next frame
if self.rect_locked:
self.rect_locked = False
# Only save the face if the rect is still locked
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
need_remark_face = True
is_frame_done = True
break
elif key == ord('q'):
#skip remaining
if self.rect_locked:
self.rect_locked = False
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
while len(self.input_data) > 0:
self.result.append( self.input_data.pop(0) )
io.progress_bar_inc(1)
break
elif key == ord('h'):
self.hide_help = not self.hide_help
break
elif key == ord('a'):
self.landmarks_accurate = not self.landmarks_accurate
break
if self.force_landmarks:
pt2 = np.float32([new_x, new_y])
pt1 = np.float32([self.x, self.y])
pt_vec_len = npla.norm(pt2-pt1)
pt_vec = pt2-pt1
if pt_vec_len != 0:
pt_vec /= pt_vec_len
self.rect_size = pt_vec_len
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
if pt_vec_len > 0:
lmrks = np.concatenate ( (np.zeros ((17,2), np.float32), LandmarksProcessor.landmarks_2D), axis=0 )
lmrks -= lmrks[30:31,:]
mat = cv2.getRotationMatrix2D( (0, 0), -np.arctan2( pt_vec[1], pt_vec[0] )*180/math.pi , pt_vec_len)
mat[:, 2] += (self.x, self.y)
self.landmarks = LandmarksProcessor.transform_points(lmrks, mat )
self.redraw()
elif self.x != new_x or \
self.y != new_y or \
self.rect_size != new_rect_size or \
self.extract_needed:
self.x = new_x
self.y = new_y
self.rect_size = new_rect_size
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
return ExtractSubprocessor.Data (filepath, rects=[self.rect], landmarks_accurate=self.landmarks_accurate)
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
io.progress_bar_inc(1)
self.extract_needed = True
self.rect_locked = False
else:
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
if not self.type != 'landmarks-manual':
self.input_data.insert(0, data)
def redraw(self):
(h,w,c) = self.image.shape
if not self.hide_help:
image = cv2.addWeighted (self.image,1.0,self.text_lines_img,1.0,0)
else:
image = self.image.copy()
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
if self.rect_size <= 40:
scaled_rect_size = h // 3 if w > h else w // 3
p1 = (self.x - self.rect_size, self.y - self.rect_size)
p2 = (self.x + self.rect_size, self.y - self.rect_size)
p3 = (self.x - self.rect_size, self.y + self.rect_size)
wh = h if h < w else w
np1 = (w / 2 - wh / 4, h / 2 - wh / 4)
np2 = (w / 2 + wh / 4, h / 2 - wh / 4)
np3 = (w / 2 - wh / 4, h / 2 + wh / 4)
mat = cv2.getAffineTransform( np.float32([p1,p2,p3])*self.view_scale, np.float32([np1,np2,np3]) )
image = cv2.warpAffine(image, mat,(w,h) )
view_landmarks = LandmarksProcessor.transform_points (view_landmarks, mat)
landmarks_color = (255,255,0) if self.rect_locked else (0,255,0)
LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.face_type, self.image_size, landmarks_color=landmarks_color)
self.extract_needed = False
io.show_image (self.wnd_name, image)
#override
def on_result (self, host_dict, data, result):
if self.type == 'landmarks-manual':
filepath, landmarks = result.filepath, result.landmarks
if len(landmarks) != 0 and landmarks[0] is not None:
self.landmarks = landmarks[0]
self.redraw()
else:
self.result.append ( result )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def process_data(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_paths, debug_paths ):
self.input_paths = input_paths
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
self.result = []
super().__init__('DeletedFilesSearcherSubprocessor', DeletedFilesSearcherSubprocessor.Cli, 60)
#override
def process_info_generator(self):
for i in range(min(multiprocessing.cpu_count(), 8)):
yield 'CPU%d' % (i), {}, {'debug_paths_stems' : self.debug_paths_stems}
#override
def on_clients_initialized(self):
io.progress_bar ("Searching deleted files", len (self.input_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.input_paths) > 0:
return [self.input_paths.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.input_paths.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
if result == False:
self.result.append( data[0] )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
def main(detector=None,
input_path=None,
output_path=None,
output_debug=None,
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
face_type='full_face',
max_faces_from_image=None,
image_size=None,
jpeg_quality=None,
cpu_only = False,
force_gpu_idxs = None,
):
if not input_path.exists():
io.log_err ('Input directory not found. Please ensure it exists.')
return
if not output_path.exists():
output_path.mkdir(parents=True, exist_ok=True)
if face_type is not None:
face_type = FaceType.fromString(face_type)
if face_type is None:
if manual_output_debug_fix:
files = pathex.get_image_paths(output_path)
if len(files) != 0:
dflimg = DFLIMG.load(Path(files[0]))
if dflimg is not None and dflimg.has_data():
face_type = FaceType.fromString ( dflimg.get_face_type() )
input_image_paths = pathex.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
output_images_paths = pathex.get_image_paths(output_path)
output_debug_path = output_path.parent / (output_path.name + '_debug')
continue_extraction = False
if not manual_output_debug_fix and len(output_images_paths) > 0:
if len(output_images_paths) > 128:
continue_extraction = io.input_bool ("Continue extraction?", True, help_message="Extraction can be continued, but you must specify the same options again.")
if len(output_images_paths) > 128 and continue_extraction:
try:
input_image_paths = input_image_paths[ [ Path(x).stem for x in input_image_paths ].index ( Path(output_images_paths[-128]).stem.split('_')[0] ) : ]
except:
io.log_err("Error in fetching the last index. Extraction cannot be continued.")
return
elif input_path != output_path:
io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n")
for filename in output_images_paths:
Path(filename).unlink()
device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(choose_only_one=detector=='manual', suggest_all_gpu=True) ) \
if not cpu_only else nn.DeviceConfig.CPU()
if face_type is None:
face_type = io.input_str ("Face type", 'wf', ['f','wf','head'], help_message="Full face / whole face / head. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[face_type]
if max_faces_from_image is None:
max_faces_from_image = io.input_int(f"Max number of faces from image", 0, help_message="If you extract a src faceset that has frames with a large number of faces, it is advisable to set max faces to 3 to speed up extraction. 0 - unlimited")
if image_size is None:
image_size = io.input_int(f"Image size", 512 if face_type < FaceType.HEAD else 768, valid_range=[256,2048], help_message="Output image size. The higher image size, the worse face-enhancer works. Use higher than 512 value only if the source image is sharp enough and the face does not need to be enhanced.")
if jpeg_quality is None:
jpeg_quality = io.input_int(f"Jpeg quality", 90, valid_range=[1,100], help_message="Jpeg quality. The higher jpeg quality the larger the output file size.")
if detector is None:
io.log_info ("Choose detector type.")
io.log_info ("[0] S3FD")
io.log_info ("[1] manual")
detector = {0:'s3fd', 1:'manual'}[ io.input_int("", 0, [0,1]) ]
if output_debug is None:
output_debug = io.input_bool (f"Write debug images to {output_debug_path.name}?", False)
if output_debug:
output_debug_path.mkdir(parents=True, exist_ok=True)
if manual_output_debug_fix:
if not output_debug_path.exists():
io.log_err(f'{output_debug_path} not found. Re-extract faces with "Write debug images" option.')
return
else:
detector = 'manual'
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_image_paths = DeletedFilesSearcherSubprocessor (input_image_paths, pathex.get_image_paths(output_debug_path) ).run()
input_image_paths = sorted (input_image_paths)
io.log_info('Found %d images.' % (len(input_image_paths)))
else:
if not continue_extraction and output_debug_path.exists():
for filename in pathex.get_image_paths(output_debug_path):
Path(filename).unlink()
images_found = len(input_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
io.log_info ('Performing manual extract...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_image_paths ], 'landmarks-manual', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()
io.log_info ('Performing 3rd pass...')
data = ExtractSubprocessor (data, 'final', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()
else:
io.log_info ('Extracting faces...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_image_paths ],
'all',
image_size,
jpeg_quality,
face_type,
output_debug_path if output_debug else None,
max_faces_from_image=max_faces_from_image,
final_output_path=output_path,
device_config=device_config).run()
faces_detected += sum([d.faces_detected for d in data])
if manual_fix:
if all ( np.array ( [ d.faces_detected > 0 for d in data] ) == True ):
io.log_info ('All faces are detected, manual fix not needed.')
else:
fix_data = [ ExtractSubprocessor.Data(d.filepath) for d in data if d.faces_detected == 0 ]
io.log_info ('Performing manual fix for %d images...' % (len(fix_data)) )
fix_data = ExtractSubprocessor (fix_data, 'landmarks-manual', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()
fix_data = ExtractSubprocessor (fix_data, 'final', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()
faces_detected += sum([d.faces_detected for d in fix_data])
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')